62,344 research outputs found

    Transport in gapped bilayer graphene: the role of potential fluctuations

    Full text link
    We employ a dual-gated geometry to control the band gap \Delta in bilayer graphene and study the temperature dependence of the resistance at the charge neutrality point, RNP(T), from 220 to 1.5 K. Above 5 K, RNP(T) is dominated by two thermally activated processes in different temperature regimes and exhibits exp(T3/T)^{1/3} below 5 K. We develop a simple model to account for the experimental observations, which highlights the crucial role of localized states produced by potential fluctuations. The high temperature conduction is attributed to thermal activation to the mobility edge. The activation energy approaches \Delta /2 at large band gap. At intermediate and low temperatures, the dominant conduction mechanisms are nearest neighbor hopping and variable-range hopping through localized states. Our systematic study provides a coherent understanding of transport in gapped bilayer graphene.Comment: to appear in Physical Review B: Rapid Com

    Colossal negative magnetoresistance in dilute fluorinated graphene

    Get PDF
    Adatoms offer an effective route to modify and engineer the properties of graphene. In this work, we create dilute fluorinated graphene using a clean, controlled and reversible approach. At low carrier densities, the system is strongly localized and exhibits an unexpected, colossal negative magnetoresistance. The zero-field resistance is reduced by a factor of 40 at the highest field of 9 T and shows no sign of saturation. Unusual "staircase" field dependence is observed below 5 K. The magnetoresistance is highly anisotropic. We discuss possible origins, considering quantum interference effects and adatom-induced magnetism in graphene.Comment: 21 pages, 4 figures, including supplementary informatio

    Quantum phase transition in easy-axis antiferromagnetic Heisenberg spin-1 chain

    Full text link
    The fidelity and entropy in an easy-axis antiferromagnetic Heisenberg spin-1 chain are studied numerically. By using the method of density-matrix renormalization group, the effects of anisotropy on fidelity and entanglement entropy are investigated. Their relations with quantum phase transition are analyzed. It is found that the quantum phase transition from the Haldane spin liquid to N\'eel spin solid can be well characterized by the fidelity. The phase transition can be hardly detected by the entropy but it can be successfully detected by the first deviation of the entropy.Comment: 3 figure

    Spin and Current Variations in Josephson Junctions

    Get PDF
    We study the dynamics of a single spin embedded in the tunneling barrier between two superconductors. As a consequence of pair correlations in the superconducting state, the spin displays rich and unusual dynamics. To properly describe the time evolution of the spin we derive the effective Keldysh action for the spin. The superconducting correlations lead to an effective spin action, which is non-local in time, leading to unconventional precession. We further illustrate how the current is modulated by this novel spin dynamics

    Magnitude of Magnetic Field Dependence of a Possible Selective Spin Filter in ZnSe/Zn_{1-x}Mn_{x}Se Multilayer Heterostructure

    Full text link
    Spin-polarized transport through a band-gap-matched ZnSe/Zn_{1-x}Mn_{x} Se/ZnSe/Zn_{1-x}Mn_{x}Se/ZnSe multilayer structure is investigated. The resonant transport is shown to occur at different energies for different spins owing to the split of spin subbands in the paramagnetic layers. It is found that the polarization of current density can be reversed in a certain range of magnetic field, with the peak of polarization moving towards a stronger magnetic field for increasing the width of central ZnSe layer while shifting towards an opposite direction for increasing the width of paramagnetic layer. The reversal is limited in a small-size system. A strong suppression of the spin up component of the current density is present at high magnetic field. It is expected that such a reversal of the polarization could act as a possible mechanism for a selective spin filter device

    Proximity effect in atomic-scaled hybrid superconductor/ferromagnet structures: crucial role of electron spectra

    Full text link
    We study the influence of the configuration of the majority and minority spin subbands of electron spectra on the properties of atomic-scaled superconductor-ferromagnet S-F-S and F-S-F hybrid structures. At low temperatures, the S/F/S junction is either a 0 or junction depending on the energy shift between S and F materials and the anisotropy of the Fermi surfaces. We found that the spin switch effect in F/S/F system can be reversed if the minority spin electron spectra in F metal is of the hole-like type

    Graded Orbital Occupation near Interfaces in a La2NiO4 - La2CuO4 Superlattice

    Full text link
    X-ray absorption spectroscopy and resonant soft x-ray reflectivity show a non-uniform distribution of oxygen holes in a La2NiO4 - La2CuO4 (LNO-LCO) superlattice, with excess holes concentrated in the LNO layers. Weak ferromagnetism with Tc = 160 K suggests a coordinated tilting of NiO6 octahedra, similar to that of bulk LNO. Ni d3z2-r2 orbitals within the LNO layers have a spatially variable occupation. This variation of the Ni valence near LNO-LCO interfaces is observed with resonant soft x-ray reflectivity at the Ni L edge, at a reflection suppressed by the symmetry of the structure, and is possible through graded doping with holes, due to oxygen interstitials taken up preferentially by inner LNO layers. Since the density of oxygen atoms in the structure can be smoothly varied with standard procedures, this orbital occupation, robust up to at least 280 K, is tunable.Comment: 11 pages, 8 figure
    corecore