17,557 research outputs found

    Expanding the thermodynamical potential and the analysis of the possible phase diagram of deconfinement in FL model

    Full text link
    The deconfinement phase transition is studied in the FL model at finite temperature and chemical potential. At MFT approximation, the phase transition can only be the first order in the whole μ−T\mu-T phase plane. By a Landau expansion we further study the phase transition order and the possible phase diagram of deconfinement. We discuss the possibilities of second order phase transitions in FL model. By our analysis the cubic term in the Landau expansion could be cancelled by the high order fluctuations. By an ansatz of the Landau parameters, we obtain the possible phase diagram with both first and second order phase transition including the tricritical point which is similar to that of the chiral phase transition.Comment: 7 pages, 8 figures, submitted to Chinese Physics

    Quantum and Classical Orientational Ordering in Solid Hydrogen

    Full text link
    We present a unified view of orientational ordering in phases I, II, and III of solid hydrogen. Phases II and III are orientationally ordered, while the ordering objects in phase II are angular momenta of rotating molecules, and in phase III the molecules themselves. This concept provides quantitative explanation of the vibron softening, libron and roton spectra, and increase of the IR vibron oscillator strength in phase III. The temperature dependence of the effective charge parallels the frequency shifts of the IR and Raman vibrons. All three quantities are linear in the order parameter.Comment: Replaced with the final text, accepted for publication in PRL. 1 Fig. added. Misc. text revision

    Quantum Reciprocity Conjecture for the Non-Equilibrium Steady State

    Full text link
    By considering the lack of history dependence in the non-equilibrium steady state of a quantum system we are led to conjecture that in such a system, there is a set of quantum mechanical observables whose retarded response functions are insensitive to the arrow of time, and which consequently satisfy a quantum analog of the Onsager reciprocity relations. Systems which satisfy this conjecture can be described by an effective Free energy functional. We demonstrate that the conjecture holds in a resonant level model of a multi-lead quantum dot.Comment: References revised to take account of related work on Onsager reciprocity in mesoscopics by Christen, and in hydrodynamics by Mclennan, Dufty and Rub

    Superconductivity in the Chalcogens up to Multimegabar Pressures

    Full text link
    Highly sensitive magnetic susceptibility techniques were used to measure the superconducting transition temperatures in S up to 231(±\pm5) GPa. S transforms to a superconductor with Tc_c of 10 K and has a discontinuity in T_c dependence at 160 GPa corresponding to bco to beta-Po phase transition. Above this pressure T_c in S has a maximum reaching about 17.3(+/-0.5) K at 200 GPa and then slowly decreases with pressure to 15 K at 230 GPa. This trend in the pressure dependence parallels the behavior of the heavier members Se and Te. Superconductivity in Se was also observed from 15 to 25 GPa with T_c changing from 4 to 6 K and above 150 GPa with T_c of 8 K. Similiarities in the T_c dependences for S, Se, and Te, and the implications for oxygen are discussed.Comment: 4 pages, 10 figure

    Orbital-dependent metamagnetic response in Sr4Ru3O10

    Full text link
    We show that the metamagnetic transition in Sr4_4Ru3_3O10_{10} bifurcates into two transitions as the field is rotated away from the conducting planes. This two-step process comprises partial or total alignment of moments in ferromagnetic bands followed by an itinerant metamagnetic transition whose critical field increases with rotation. Evidence for itinerant metamagnetism is provided by the Shubnikov-de Hass effect which shows a non-trivial evolution of the geometry of the Fermi surface and an enhancement of the quasiparticles effective-mass across the transition. The metamagnetic response of Sr4_4Ru3_3O10_{10} is orbital-dependent and involves ferromagnetic and metamagnetic bands.Comment: Physical Review B (in press

    The influence of baryons on the mass distribution of dark matter halos

    Get PDF
    Using a set of high-resolution N-body/SPH cosmological simulations with identical initial conditions but run with different numerical setups, we investigate the influence of baryonic matter on the mass distribution of dark halos when radiative cooling is NOT included. We compare the concentration parameters of about 400 massive halos with virial mass from 101310^{13} \Msun to 7.1×10147.1 \times 10^{14} \Msun. We find that the concentration parameters for the total mass and dark matter distributions in non radiative simulations are on average larger by ~3% and 10% than those in a pure dark matter simulation. Our results indicate that the total mass density profile is little affected by a hot gas component in the simulations. After carefully excluding the effects of resolutions and spurious two-body heating between dark matter and gas particles, we conclude that the increase of the dark matter concentration parameters is due to interactions between baryons and dark matter. We demonstrate this with the aid of idealized simulations of two-body mergers. The results of individual halos simulated with different mass resolutions show that the gas profiles of densities, temperature and entropy are subjects of mass resolution of SPH particles. In particular, we find that in the inner parts of halos, as the SPH resolution increases the gas density becomes higher but both the entropy and temperature decrease.Comment: 8 pages, 6 figures, 1 table, ApJ in press (v652n1); updated to match with the being published versio

    Effects of Dust on Gravitational Lensing by Spiral Galaxies

    Full text link
    Gravitational lensing of an optical QSO by a spiral galaxy is often counteracted by dust obscuration, since the line-of-sight to the QSO passes close to the center of the galactic disk. The dust in the lens is likely to be correlated with neutral hydrogen, which in turn should leave a Lyman-alpha absorption signature on the QSO spectrum. We use the estimated dust-to-gas ratio of the Milky-Way galaxy as a mean and allow a spread in its values to calculate the effects of dust on lensing by low redshift spiral galaxies. Using a no-evolution model for spirals at z<1 we find (in Lambda=0 cosmologies) that the magnification bias due to lensing is stronger than dust obscuration for QSO samples with a magnitude limit B<16. The density parameter of neutral hydrogen, Omega_HI, is overestimated in such samples and is underestimated for fainter QSOs.Comment: 18 pages, 4 figures, ApJ, in pres

    Anisotropy of magnetothermal conductivity in Sr2RuO4

    Full text link
    The dependence of in-plane and interplane thermal conductivities of Sr2RuO4 on temperature, as well as magnetic field strength and orientation, is reported. We found no notable anisotropy in the thermal conductivity for the magnetic field rotation parallel to the conducting plane in the whole range of experimental temperatures and fields, except in the vicinity of the upper critical field Hc2, where the anisotropy of the Hc2 itself plays a dominant role. This finding imposes strong constraints on the possible models of superconductivity in Sr2RuO4 and supports the existence of a superconducting gap with a line of nodes running orthogonal to the Fermi surface cylinder.Comment: published in Phys. Rev. Lett. 4pages, 4 eps figures, LaTe

    Experimental determination of superconducting parameters for the intermetallic perovskite superconductor ${\text {MgCNi}}_3

    Full text link
    We have measured upper-critical-field Hc2H_{\text c2}, specific heat C, and tunneling spectra of the intermetallic perovskite superconductor MgCNi3{}_3 with a superconducting transition temperature Tc≈7.6T_{\text c}\approx 7.6 K. Based on these measurements and relevant theoretical relations, we have evaluated various superconducting parameters for this material, including the thermodynamic critical field HcH_{\text c}(0), coherence length ξ\xi(0), penetration depth λ\lambda(0), lower-critical-field Hc1H_{\text c1}(0), and Ginsberg-Landau parameter κ\kappa(0). From the specific heat, we obtain the Debye temperature ΘD≈\it \Theta_{\text D} \approx 280 K. We find a jump of ΔC/γTc\Delta C/\gamma T_{\text c}=2.3 at TcT_{\text c} (where γ\it \gamma is the normal state electronic specific coefficient), which is much larger than the weak coupling BCS value of 1.43. Our tunneling measurements revealed a gap feature in the tunneling spectra at Δ\it \Delta with 2Δ/kBTc≈2\it {\Delta}/{\text k}_{\text B}T_{\text c}\approx 4.6, again larger than the weak-coupling value of 3.53. Both findings indicate that MgCNi3_3 is a strong-coupling superconductor. In addition, we observed a pronounced zero-bias conductance peak (ZBCP) in the tunneling spectra. We discuss the possible physical origins of the observed ZBCP, especially in the context of the pairing symmetry of the material.Comment: 5 pages, 4 figure
    • …
    corecore