708 research outputs found

    Enhanced charge carrier transport properties in colloidal quantum dot solar cells via organic and inorganic hybrid surface passivation.

    Get PDF
    Colloidal quantum dots (CQDs) are extremely promising as photovoltaic materials. In particular, the tunability of their electronic band gap and cost effective synthetic procedures allow for the versatile fabrication of solar energy harvesting cells, resulting in optimal device performance. However, one of the main challenges in developing high performance quantum dot solar cells (QDSCs) is the improvement of the photo-generated charge transport and collection, which is mainly hindered by imperfect surface functionalization, such as the presence of surface electronic trap sites and the initial bulky surface ligands. Therefore, for these reasons, finding effective methods to efficiently decorate the surface of the as-prepared CQDs with new short molecular length chemical structures so as to enhance the performance of QDSCs is highly desirable. Here, we suggest employing hybrid halide ions along with the shortest heterocyclic molecule as a robust passivation structure to eliminate surface trap sites while decreasing the charge trapping dynamics and increasing the charge extraction efficiency in CQD active layers. This hybrid ligand treatment shows a better coordination with Pb atoms within the crystal, resulting in low trap sites and a near perfect removal of the pristine initial bulky ligands, thereby achieving better conductivity and film structure. Compared to halide ion-only treated cells, solar cells fabricated through this hybrid passivation method show an increase in the power conversion efficiency from 5.3% for the halide ion-treated cells to 6.8% for the hybrid-treated solar cells

    Histological analysis of low dose NMU effects in the rat mammary gland

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our objective was to assess the histological changes in mammary glands of the female Wistar-Furth rat as a result of low dose exposure to N-nitrosomethylurea (NMU).</p> <p>Methods</p> <p>Groups of 30–40 virgin female rats of between 49–58 days old received a single injection of 10, 20, 30 or 50 mg NMU/kg body weight (BW). A group of 10 control rats received 0.9% NaCl solution only. The formation of palpable mammary gland tumors was assessed weekly and, upon sacrifice at 12, 22 and 25–30 weeks after treatment, we performed a comprehensive histological analysis of all mammary gland lesions and tumors.</p> <p>Results</p> <p>Alongside the predicted increase in tumor number and decrease in tumor latency with increasing NMU dose, we observed a number of microscopic lesions and other epithelial abnormalities in the mammary glands for all NMU doses. Two types of non-neoplastic histological changes were observed in rats exposed to 10 or 20 mg NMU/kg BW: namely, (i) an increase in the number of acinar structures often accompanied by secretion into the lumen which is normally associated with pregnancy and lactation, and (ii) an increase in the number of epithelial cells sloughed into the lumen of the epithelial ducts.</p> <p>Conclusion</p> <p>This study establishes a baseline for low-dose exposure and defines the histological features in the mammary gland resulting from NMU exposure. Furthermore, this system provides an ideal platform for evaluating the relative susceptibility of animals protected from, or predisposed to, developing cancer through environmental influences.</p

    Cerebral blood volume, genotype and chemosensitivity in oligodendroglial tumours

    Get PDF
    INTRODUCTION: The biological factors responsible for differential chemoresponsiveness in oligodendroglial tumours with or without the −1p/−19q genotype are unknown, but tumour vascularity may contribute. We aimed to determine whether dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) could distinguish molecular subtypes of oligodendroglial tumour, and examined the relationship between relative cerebral blood volume (rCBV) and outcome following procarbazine, lomustine and vincristine (PCV) chemotherapy. METHODS: Pretherapy rCBV was calculated and inter- and intraobserver variability assessed. Allelic imbalance in 1p36, 19q13, 17p13, 10p12–15, and 10q22–26 and p53 mutation (exons 5–8) were determined. rCBV was compared with genotype and clinicopathological characteristics (n=37) and outcome following PCV chemotherapy (n=33). RESULTS: 1p/19q loss was seen in 6/9 grade II oligodendrogliomas, 6/14 grade II oligoastrocytomas, 4/4 grade III oligodendrogliomas, and 3/10 grade III oligoastrocytomas. rCBV measurements had good inter- and intraobserver variability, but did not distinguish histology subtype or grade. Tumours with 1p/19q loss had higher rCBV values (Student’s t-test P=0.001). Receiver operating characteristic analysis revealed a cut-off of 1.59 for identifying genotype (sensitivity 92%, specificity 76%). Tumours with high and low rCBV showed response to chemotherapy. The −1p/−19q genotype, but not rCBV, was strongly associated with response, progression-free and overall survival following PCV chemotherapy. Tumours with high rCBV and intact 1p/19q were associated with shorter progression-free and overall patient survival than those with intact 1p/19q and low rCBV or high rCBV and 1p/19q loss. CONCLUSION: rCBV identifies oligodendroglial tumours with 1p/19q loss, but does not predict chemosensitivity. The prognostic significance of rCBV may differ in oligodendroglial tumours with or without the −1p/−19q genotype

    Radiological progression of cerebral metastases after radiosurgery: assessment of perfusion MRI for differentiating between necrosis and recurrence

    Get PDF
    To assess the capability of perfusion MRI to differentiate between necrosis and tumor recurrence in patients showing radiological progression of cerebral metastases treated with stereotactic radiosurgery (SRS). From 2004 to 2006 dynamic susceptibility-weighted contrast-enhanced perfusion MRI scans were performed on patients with cerebral metastasis showing radiological progression after SRS during follow-up. Several perfusion MRI characteristics were examined: a subjective visual score of the relative cerebral blood volume (rCBV) map and quantitative rCBV measurements of the contrast-enhanced areas of maximal perfusion. For a total of 34 lesions in 31 patients a perfusion MRI was performed. Diagnoses were based on histology, definite radiological decrease or a combination of radiological and clinical follow-up. The diagnosis of tumor recurrence was obtained in 20 of 34 lesions, and tumor necrosis in 14 of 34. Regression analyses for all measures proved statistically significant (χ2 = 11.6–21.6, P < 0.001–0.0001). Visual inspection of the rCBV map yielded a sensitivity and specificity of 70.0 respectively 92.9%. The optimal cutoff point for maximal tumor rCBV relative to white matter was 2.00 (improving the sensibility to 85.0%) and 1.85 relative to grey matter (GM), improving the specificity to 100%, with a corresponding sensitivity of 70.0%. Perfusion MRI seems to be a useful tool in the differentiation of necrosis and tumor recurrence after SRS. For the patients displaying a rCBV-GM greater than 1.85, the diagnosis of necrosis was excluded. Salvage treatment can be initiated for these patients in an attempt to prolong survival

    Core-shell strain structure of zeolite microcrystals

    Get PDF
    Zeolites are crystalline aluminosilicate minerals featuring a network of 0.3-1.5-nm-wide pores, used in industry as catalysts for hydrocarbon interconversion, ion exchangers, molecular sieves and adsorbents. For improved applications, it is highly useful to study the distribution of internal local strains because they sensitively affect the rates of adsorption and diffusion of guest molecules within zeolites. Here, we report the observation of an unusual triangular deformation field distribution in ZSM-5 zeolites by coherent X-ray diffraction imaging, showing the presence of a strain within the crystal arising from the heterogeneous core-shell structure, which is supported by finite element model calculation and confirmed by fluorescence measurement. The shell is composed of H-ZSM-5 with intrinsic negative thermal expansion whereas the core exhibits a different thermal expansion behaviour due to the presence of organic template residues, which usually remain when the starting materials are insufficiently calcined. Engineering such strain effects could have a major impact on the design of future catalysts

    Limits of Calcium Clearance by Plasma Membrane Calcium ATPase in Olfactory Cilia

    Get PDF
    BACKGROUND: In any fine sensory organelle, a small influx of Ca(2+) can quickly elevate cytoplasmic Ca(2+). Mechanisms must exist to clear the ciliary Ca(2+) before it reaches toxic levels. One such organelle has been well studied: the vertebrate olfactory cilium. Recent studies have suggested that clearance from the olfactory cilium is mediated in part by plasma membrane Ca(2+)-ATPase (PMCA). PRINCIPAL FINDINGS: In the present study, electrophysiological assays were devised to monitor cytoplasmic free Ca(2+) in single frog olfactory cilia. Ca(2+) was allowed to enter isolated cilia, either through the detached end or through membrane channels. Intraciliary Ca(2+) was monitored via the activity of ciliary Ca(2+)-gated Cl(-) channels, which are sensitive to free Ca(2+) from about 2 to 10 microM. No significant effect of MgATP on intraciliary free Ca(2+) could be found. Carboxyeosin, which has been used to inhibit PMCA, was found to substantially increase a ciliary transduction current activated by cyclic AMP. This increase was ATP-independent. CONCLUSIONS: Alternative explanations are suggested for two previous experiments taken to support a role for PMCA in ciliary Ca(2+) clearance. It is concluded that PMCA in the cilium plays a very limited role in clearing the micromolar levels of intraciliary Ca(2+) produced during the odor response

    The heparan sulfate sulfotransferase 3-OST3A (HS3ST3A) is a novel tumor regulator and a prognostic marker in breast cancer

    Get PDF
    International audienceHeparan sulfate (HS) proteoglycan chains are key components of the breast tumor microenvironment that critically influence the behavior of cancer cells. It is established that abnormal synthesis and processing of HS play a prominent role in tumorigenesis, albeit mechanisms remain mostly obscure. HS function is mainly controlled by sulfotransferases, and here we report a novel cellular and pathophysiological significance for the 3-O-sulfotransferase 3-OST3A (HS3ST3A), catalyzing the final maturation step of HS, in breast cancer. We show that 3-OST3A is epigenetically repressed in all breast cancer cell lines of a panel representative of distinct molecular subgroups, except in human epidermal growth factor receptor 2-positive (HER2+) sloan-kettering breast cancer (SKBR3) cells. Epigenetic mechanisms involved both DNA methylation and histone modifications, producing different repressive chromatin environments depending on the cell molecular signature. Gain and loss of function experiments by cDNA and siRNA transfection revealed profound effects of 3-OST3A expression on cell behavior including apoptosis, proliferation, response to trastuzumab in vitro and tumor growth in xenografted mice. 3-OST3A exerted dual activities acting as tumor-suppressor in lumA-michigan cancer foundation (MCF)-7 and triple negative-MD Anderson (MDA) metastatic breast (MB)-231 cells, or as an oncogenic factor in HER2+-SKBR3 cells. Mechanistically, fluorescence-resonance energy transfer-fluorescence-lifetime imaging microscopy experiments indicated that the effects of 3-OST3A in MCF-7 cells were mediated by altered interactions between HS and fibroblast growth factor-7 (FGF-7). Further, this interplay between HS and FGF-7 modulated downstream ERK, AKT and p38 cascades, suggesting that altering 3-O-sulfation affects FGFR2IIIb-mediated signaling. Corroborating our cellular data, a clinical study conducted in a cohort of breast cancer patients uncovered that, in HER2+ patients, high level expression of 3-OST3A in tumors was associated with reduced relapse-free survival. Our findings define 3-OST3A as a novel regulator of breast cancer pathogenicity, displaying tumor-suppressive or oncogenic activities in a cell-and tumor-dependent context, and demonstrate the clinical value of the HS-O-sulfotransferase 3-OST3A as a prognostic marker in HER2+ patients

    A Multicenter, Long-Term Study on Arrhythmias in Children with Ebstein Anomaly

    Get PDF
    To assess the prevalence, history, and treatment of arrhythmias, in particular preexcitation and Wolff–Parkinson–White (WPW) syndrome, in patients with Ebstein anomaly (EA) during childhood and adolescence, we performed a multicenter retrospective study of all consecutive live-born patients with EA, diagnosed, and followed by pediatric cardiologists between 1980 and 2005 in The Netherlands. During a follow-up after EA diagnosis of 13 years 3 months (range: 6 days to 28 years 2 months), 16 (17%) of the 93 pediatric EA patients exhibited rhythm disturbances. Nine patients showed arrhythmic events starting as of the neonatal period. Supraventricular tachycardia was noted in 11 patients. One patient died in the neonatal period due to intractable supraventricular tachycardia resulting in heart failure and one patient died at 5 weeks of age most probably due to an arrhythmic event. The 14 surviving patients all show preexcitation, albeit 4 of them intermittently, and all have a right-sided accessory pathway location. Nine patients underwent catheter ablation of an accessory pathway. Only four patients are currently on antiarrhythmic drugs. The 17% prevalence of rhythm disturbances in pediatric EA patients, most commonly supraventricular arrhythmias, is significantly lower than in adult EA patients. Life-threatening rhythm disturbances are not frequent early in life. Symptomatic patients are well treated with radiofrequency catheter ablation
    corecore