12,912 research outputs found

    Crustal interpretation of the MAGSAT data in the continental United States

    Get PDF
    The processing of MAGSAT scalar data to construct a crustal magnetic anomaly map over the continental U.S. involves removal of the reference field model, a path-by-path subtraction of a low order polynomial through a least-squares fit to reduce orbital offset errors, and a two dimensional spectral filtering to mitigate the spectral bias induced by the path-by-path orbital correction scheme. The resultant anomaly map shows reasonably good correlations with an aeromagnetic map derived from the project MAGNET. Prominent satellite magnetic anomalies are identified in terms of geological provinces and age boundaries. An inversion method was applied to MAGSAT data which produces both the Curie depth topography and laterally varying magnetic susceptibility of the crust. A contoured Curie depth map thus derived shows general agreements with a crustal thickness map based on seismic data

    Thermal conductivity in B- and C- phase of UPt_3

    Full text link
    Although the superconductivity in UPt_3 is one of the most well studied, there are still lingering questions about the nodal directions in the B and C phase in the presence of a magnetic field. Limiting ourselves to the low temperature regime (T<<Delta(0)), we study the magnetothermal conductivity with in semiclassical approximation using Volovik's approach. The angular dependence of the magnetothermal conductivity for an arbitrary field direction should clarify the nodal structure in UPt_3.Comment: 4 pages, 5 figure

    Threshold electric field in unconventional density waves

    Full text link
    As it is well known most of charge density wave (CDW) and spin density wave (SDW) exhibit the nonlinear transport with well defined threshold electric field E_T. Here we study theoretically the threshold electric field of unconventional density waves. We find that the threshold field increases monotonically with temperature without divergent behaviour at T_c, unlike the one in conventional CDW. The present result in the 3D weak pinning limit appears to describe rather well the threshold electric field observed recently in the low-temperature phase (LTP) of alpha-(BEDT-TTF)_2KHg(SCN)_4.Comment: 4 pages, 2 figure

    Thermophysical and elastic properties of Cu50Zr50 and (Cu50Zr50)95Al5 bulk-metallic-glass-forming alloys

    Get PDF
    By employing a containerless high-temperature high-vacuum electrostatic levitation technique, the thermophysical properties, including the ratio between the specific heat capacity and the hemispherical total emissivity, the specific volume, and the viscosity, of Cu50Zr50 and (Cu50Zr50)95Al5 bulk-metallic-glass (BMG)-forming liquids have been measured. Compared with Cu50Zr50, the improved glass-forming ability of (Cu50Zr50)95Al5 can be attributed to its dense liquid structure and its high value of viscosity. Additionally, the relationship between the viscosity of various BMG forming liquids at the melting temperature and the elastic properties of the corresponding glasses at room temperature will be compared

    Lyman alpha line formation in starbursting galaxies II. Extremely Thick, Dustless, and Static HI Media

    Full text link
    The Lya line transfer in an extremely thick medium of neutral hydrogen is investigated by adopting an accelerating scheme in our Monte Carlo code to skip a large number of core or resonant scatterings. This scheme reduces computing time significantly with no sacrifice in the accuracy of the results. We applied this numerical method to the Lya transfer in a static, uniform, dustless, and plane-parallel medium. Two types of photon sources have been considered, the midplane source and the uniformly distributed sources. The emergent profiles show double peaks and absorption trough at the line-center. We compared our results with the analytic solutions derived by previous researchers, and confirmed that both solutions are in good agreement with each other. We investigated the directionality of the emergent Lya photons and found that limb brightening is observed in slightly thick media while limb darkening appears in extremely thick media. The behavior of the directionality is noted to follow that of the Thomson scattered radiation in electron clouds, because both Lya wing scattering and Thomson scattering share the same Rayleigh scattering phase function. The mean number of wing scatterings just before escape is in exact agreement with the prediction of the diffusion approximation. The Lya photons constituting the inner part of the emergent profiles follow the relationship derived from the diffusion approximation. We present a brief discussion on the application of our results to the formation of Lya broad absorption troughs and P-Cygni type Lya profiles seen in the UV spectra of starburst galaxies.Comment: 24 papges, 12 figures, The revised version submitted to Ap

    Faddeev-Jackiw Analysis of Topological Mass Generating Action

    Full text link
    We analyze the gauge symmetry of a topological mass generating action in four dimensions which contains both a vector and a second rank antisymmetric tensor fields. In the Abelian case, this system induces an effective mass for the vector gauge field via a topological coupling BFB \wedge F in the presence of a kinetic term for the antisymmetric tensor field BB, while maintaining a gauge symmetry. On the other hand, for the non-Abelian case the BB field does not have a gauge symmetry unless an auxiliary vector field is introduced to the system. We analyze this change of symmetry in the Faddeev-Jackiw formalism, and show how the auxiliary vector field enhances the symmetry. At the same time this enhanced gauge symmetry becomes reducible. We also show this phenomenon in this analysis.Comment: 20 pages, REVTe
    corecore