56,042 research outputs found
Factorization in hard diffraction
In this talk, I reviewed the role of factorization in diffraction hard
scattering.Comment: Talk presented at the Ringberg Workshop on ``New Trends in HERA
Physics 2001''. 10 pages, 6 postscript figures. Misprints correcte
Thermodynamics of the frustrated - Heisenberg ferromagnet on the body-centered cubic lattice with arbitrary spin
We use the spin-rotation-invariant Green's function method as well as the
high-temperature expansion to discuss the thermodynamic properties of the
frustrated spin- - Heisenberg magnet on the body-centered
cubic lattice. We consider ferromagnetic nearest-neighbor bonds and
antiferromagnetic next-nearest-neighbor bonds and arbitrary spin
. We find that the transition point between the ferromagnetic ground
state and the antiferromagnetic one is nearly independent of the spin ,
i.e., it is very close to the classical transition point . At finite temperatures we focus on the parameter regime
with a ferromagnetic ground-state. We calculate the Curie
temperature and derive an empirical formula describing the
influence of the frustration parameter and spin on . We find
that the Curie temperature monotonically decreases with increasing frustration
, where very close to the -curve exhibits a
fast decay which is well described by a logarithmic term
. To characterize the magnetic ordering
below and above , we calculate the spin-spin correlation functions
, the spontaneous
magnetization, the uniform static susceptibility as well as the
correlation length . Moreover, we discuss the specific heat and the
temperature dependence of the excitation spectrum. As approaching the
transition point some unusual features were found, such as negative
spin-spin correlations at temperatures above even though the ground state
is ferromagnetic or an increase of the spin stiffness with growing temperature.Comment: 19 pages, 10 figures, version as in EPJ
Limits to phase resolution in matter wave interferometry
We study the quantum dynamics of a two-mode Bose-Einstein condensate in a
time-dependent symmetric double-well potential using analytical and numerical
methods. The effects of internal degrees of freedom on the visibility of
interference fringes during a stage of ballistic expansion are investigated
varying particle number, nonlinear interaction sign and strength as well as
tunneling coupling. Expressions for the phase resolution are derived and the
possible enhancement due to squeezing is discussed. In particular, the role of
the superfluid - Mott insulator cross-over and its analog for attractive
interactions is recognized.Comment: 10 pages, 9 figure
They are looking... why not interacting? Understanding interaction around the public display of community sourced videos
In this paper, we study the extent to which the presentation of pedagogical videos on a public display at a communal space of the school is able to promote engagement around those videos. The videos were produced by students from the school itself. Using a mobile application, students could rate, create comments or simply bookmark videos. The evaluation of the platform is made through logs analysis, direct observation and a collective interview with end-users. The results show that even though the videos were able to attract many students to the display, there were not many of them that actually used the application to interact with content. In the final discussion, we explore some of the reasons that may justify this behavior and also the extent to which these videos have managed to foster students’ curiosity towards their topics.(undefined
Dynamics and phase evolution of Bose-Einstein condensates in one-dimensional optical lattices
We report experimental results on the dynamics and phase evolution of
Bose-Einstein condensates in 1D optical lattices. The dynamical behaviour is
studied by adiabatically loading the condensate into the lattice and
subsequently switching off the magnetic trap. In this case, the condensate is
free to expand inside the periodic structure of the optical lattice. The phase
evolution of the condensate, on the other hand, can be studied by
non-adiabatically switching on the periodic potential. We observe decays and
revivals of the interference pattern after a time-of-flight.Comment: 6 pages, 5 figures; submitted to the Proceedings of the 11th Laser
Physics Workshop, Bratislava 200
Solitary-wave description of condensate micro-motion in a time-averaged orbiting potential trap
We present a detailed theoretical analysis of micro-motion in a time-averaged
orbiting potential trap. Our treatment is based on the Gross-Pitaevskii
equation, with the full time dependent behaviour of the trap systematically
approximated to reduce the trapping potential to its dominant terms. We show
that within some well specified approximations, the dynamic trap has
solitary-wave solutions, and we identify a moving frame of reference which
provides the most natural description of the system. In that frame eigenstates
of the time-averaged orbiting potential trap can be found, all of which must be
solitary-wave solutions with identical, circular centre of mass motion in the
lab frame. The validity regime for our treatment is carefully defined, and is
shown to be satisfied by existing experimental systems.Comment: 12 pages, 2 figure
Contact tracing and epidemics control in social networks
A generalization of the standard susceptible-infectious-removed (SIR)
stochastic model for epidemics in sparse random networks is introduced which
incorporates contact tracing in addition to random screening. We propose a
deterministic mean-field description which yields quantitative agreement with
stochastic simulations on random graphs. We also analyze the role of contact
tracing in epidemics control in small-world networks and show that its
effectiveness grows as the rewiring probability is reduced.Comment: 4 pages, 4 figures, submitted to PR
- …
