56,042 research outputs found

    Factorization in hard diffraction

    Get PDF
    In this talk, I reviewed the role of factorization in diffraction hard scattering.Comment: Talk presented at the Ringberg Workshop on ``New Trends in HERA Physics 2001''. 10 pages, 6 postscript figures. Misprints correcte

    Thermodynamics of the frustrated J1J_1-J2J_2 Heisenberg ferromagnet on the body-centered cubic lattice with arbitrary spin

    Full text link
    We use the spin-rotation-invariant Green's function method as well as the high-temperature expansion to discuss the thermodynamic properties of the frustrated spin-SS J1J_{1}-J2J_{2} Heisenberg magnet on the body-centered cubic lattice. We consider ferromagnetic nearest-neighbor bonds J1<0J_1 < 0 and antiferromagnetic next-nearest-neighbor bonds J20J_2 \ge 0 and arbitrary spin SS. We find that the transition point J2cJ_2^c between the ferromagnetic ground state and the antiferromagnetic one is nearly independent of the spin SS, i.e., it is very close to the classical transition point J2c,clas=23J1J_2^{c,{\rm clas}}= \frac{2}{3}|J_1|. At finite temperatures we focus on the parameter regime J2<J2cJ_2<J_2^c with a ferromagnetic ground-state. We calculate the Curie temperature TC(S,J2)T_{C}(S,J_{2}) and derive an empirical formula describing the influence of the frustration parameter J2J_{2} and spin SS on TCT_C. We find that the Curie temperature monotonically decreases with increasing frustration J2J_2, where very close to J2c,clasJ_2^{c,{\rm clas}} the TC(J2)T_C(J_2)-curve exhibits a fast decay which is well described by a logarithmic term 1/log(23J1J2)1/\textrm{log}(\frac{2}{3}|J_1|-J_{2}). To characterize the magnetic ordering below and above TCT_C, we calculate the spin-spin correlation functions S0SR\langle {\bf S}_{\bf 0} {\bf S}_{\bf R} \rangle, the spontaneous magnetization, the uniform static susceptibility χ0\chi_0 as well as the correlation length ξ\xi. Moreover, we discuss the specific heat CVC_V and the temperature dependence of the excitation spectrum. As approaching the transition point J2cJ_2^c some unusual features were found, such as negative spin-spin correlations at temperatures above TCT_C even though the ground state is ferromagnetic or an increase of the spin stiffness with growing temperature.Comment: 19 pages, 10 figures, version as in EPJ

    Limits to phase resolution in matter wave interferometry

    Full text link
    We study the quantum dynamics of a two-mode Bose-Einstein condensate in a time-dependent symmetric double-well potential using analytical and numerical methods. The effects of internal degrees of freedom on the visibility of interference fringes during a stage of ballistic expansion are investigated varying particle number, nonlinear interaction sign and strength as well as tunneling coupling. Expressions for the phase resolution are derived and the possible enhancement due to squeezing is discussed. In particular, the role of the superfluid - Mott insulator cross-over and its analog for attractive interactions is recognized.Comment: 10 pages, 9 figure

    They are looking... why not interacting? Understanding interaction around the public display of community sourced videos

    Get PDF
    In this paper, we study the extent to which the presentation of pedagogical videos on a public display at a communal space of the school is able to promote engagement around those videos. The videos were produced by students from the school itself. Using a mobile application, students could rate, create comments or simply bookmark videos. The evaluation of the platform is made through logs analysis, direct observation and a collective interview with end-users. The results show that even though the videos were able to attract many students to the display, there were not many of them that actually used the application to interact with content. In the final discussion, we explore some of the reasons that may justify this behavior and also the extent to which these videos have managed to foster students’ curiosity towards their topics.(undefined

    Dynamics and phase evolution of Bose-Einstein condensates in one-dimensional optical lattices

    Full text link
    We report experimental results on the dynamics and phase evolution of Bose-Einstein condensates in 1D optical lattices. The dynamical behaviour is studied by adiabatically loading the condensate into the lattice and subsequently switching off the magnetic trap. In this case, the condensate is free to expand inside the periodic structure of the optical lattice. The phase evolution of the condensate, on the other hand, can be studied by non-adiabatically switching on the periodic potential. We observe decays and revivals of the interference pattern after a time-of-flight.Comment: 6 pages, 5 figures; submitted to the Proceedings of the 11th Laser Physics Workshop, Bratislava 200

    Solitary-wave description of condensate micro-motion in a time-averaged orbiting potential trap

    Full text link
    We present a detailed theoretical analysis of micro-motion in a time-averaged orbiting potential trap. Our treatment is based on the Gross-Pitaevskii equation, with the full time dependent behaviour of the trap systematically approximated to reduce the trapping potential to its dominant terms. We show that within some well specified approximations, the dynamic trap has solitary-wave solutions, and we identify a moving frame of reference which provides the most natural description of the system. In that frame eigenstates of the time-averaged orbiting potential trap can be found, all of which must be solitary-wave solutions with identical, circular centre of mass motion in the lab frame. The validity regime for our treatment is carefully defined, and is shown to be satisfied by existing experimental systems.Comment: 12 pages, 2 figure

    Contact tracing and epidemics control in social networks

    Full text link
    A generalization of the standard susceptible-infectious-removed (SIR) stochastic model for epidemics in sparse random networks is introduced which incorporates contact tracing in addition to random screening. We propose a deterministic mean-field description which yields quantitative agreement with stochastic simulations on random graphs. We also analyze the role of contact tracing in epidemics control in small-world networks and show that its effectiveness grows as the rewiring probability is reduced.Comment: 4 pages, 4 figures, submitted to PR
    corecore