2,253 research outputs found

    HCl Absorption Toward Sagittarius B2

    Get PDF
    We have detected the 626 GHz J = 1 → 0 transition of hydrogen chloride (H^(35)Cl) in absorption against the dust continuum emission of the molecular cloud Sagittarius B2. The observed line shape is consistent with the blending of the three hyperfine components of this transition by the velocity profile of Sgr B2 observed in other species. The apparent optical depth of the line is t ≈ 1, and the minimum HCl column density is 1.6 x 10^(14) cm^(-2) A detailed radiative transfer model was constructed which includes collisional and radiative excitation, absorption and emission by dust, and the radial variation of temperature and density. Good agreement between the model and the data is obtained for HCl/H_2 ~ 1.1 x 10^(-9). Comparison of this result to chemical models indicates that the depletion factor of gas-phase chlorine is between 50–180 in the molecular envelope surrounding the SgrB2(N) and (M) dust cores

    Submillimeter spectroscopy of interstellar hydrides

    Get PDF
    We discuss airborne observations of rotational transitions of various hydride molecules in the interstellar medium, including H_2^(18)O and HCI. The detection of these transitions is now feasible with a new, sensitive submillimeter receiver which has been developed for the NASA Kuiper Airborne Observatory (KAO) over the past several years

    Far infrared maps of the ridge between OMC-1 and OMC-2

    Get PDF
    Dust continuum emission from a 6 ft x 20 ft region surrounding OMC-1 and OMC-2 were mapped at 55 and 125 microns with 4 ft resolution. The dominant features of the maps are a strong peak at OMC-1 and a ridge of lower surface brightness between OMC-1 and OMC-2. Along the ridge the infrared flux densities and the color temperature decreases smoothly from OMC-1 to OMC-2. OMC-1 is heated primarily by several optical and infrared stars situated within or just at the boundary of the cloud. At the region of minimum column density between OMC-1 and OMC-2 the nearby B0.5 V star NU Ori may contribute significantly to the dust heating. Near OMC-2 dust column densities are large enough so that, in addition to the OMC-2 infrared cluster, the nonlocal infrared sources associated with OMC-1 and NU Ori can contribute to the heating

    Isolation and analysis of cDNA clones expressing human lupus La antigen.

    Full text link

    Sequences within a small yeast RNA required for inhibition of internal initiation of translation: interaction with La and other cellular proteins influences its inhibitory activity

    Get PDF
    We recently reported purification, determination of the nucleotide sequence, and cloning of a 60-nucleotide RNA (I-RNA) from the yeast Saccharomyces cerevisiae which preferentially blocked cap-independent, internal ribosome entry site (IRES)-mediated translation programmed by the poliovirus (PV) 5' untranslated region (UTR). The I-RNA appeared to inhibit IRES-mediated translation by virtue of its ability to bind a 52- kDa polypeptide which interacts with the 5' UTR of viral RNA. We demonstrate here that the HeLa 52-kDa I-RNA-binding protein is immunologically identical to human La autoantigen. Moreover, I-RNA- mediated purified La protein. By using I-RNAs with defined deletions, we have identified sequences of I-RNA required for inhibition of internal initiation of translation. Two smaller fragments of I-RNA (16 and 25 nucleotides) inhibited PV UTR-mediated translation from both monocistronic and bicistronic RNAs. When transfected into HeLa cells, these derivatives of I-RNA inhibited translation of PV RNA. A comparison of protein binding by active and inactive I-RNA mutants demonstrates that in addition to the La protein, three other polypeptides with apparent molecular masses of 80, 70, and 37 kDa may influence the translation-inhibitory activity of I-RNA

    Submarine landslides on the upper southeast Australian passive continental margin – preliminary findings

    Get PDF
    The southeast Australian passive continental margin is narrow, steep and sediment-deficient, and characterized by relatively low rates of modern sedimentation. Upper slope (\u3c1200m) sediments comprise mixtures of calcareous and terrigenous sand and mud. Three of twelve sediment cores recovered from geologically-recent, submarine landslides located offshore New South Wales/Queensland (NSW/QLD) are interpreted to have sampled failure surfaces at depths of between 85 cm and 220 cm below the present-day seabed. Differences in sediment physical properties are recorded above and below the three slide-plane boundaries. Sediment taken directly above the inferred submarine landslide failure surfaces and presumed to be post-landslide, returned radiocarbon ages of 15.8 ka, 20.7 ka and 20.1 ka. The last two ages correspond to adjacent slide features, which are inferred to be consistent with their being triggered by a single event such as an earthquake. Slope stability models based on classical soil mechanics and measured sediment shearstrengths indicate that the upper slope sediments should be stable. However, multibeam sonar data reveal that many upper slope landslides occur across the margin and that submarine landsliding is a common process. We infer from these results that: a) an unidentified mechanism regularly acts to reduce the shear resistance of these sediments to the very low values required to enable slope failure, and/or b) the margin experiences seismic events that act to destabilise the slope sediments

    Millimeter Observations of Optically Selected Quasars

    Get PDF
    We have observed a group of optically selected quasars at a wavelength of 1.25mm with the Caltech Submillimeter Observatory in 1988 May. Except for Mrk 231, they were chosen from the PG sample of quasars (Schmidt and Green 1983) and are thus UV bright objects. All of them, except for PG 2209+184, were also detected at 60μm by IRAS

    Far infrared and submillimeter brightness temperatures of the giant planets

    Get PDF
    The brightness temperatures of Jupiter, Saturn, Uranus, and Neptune in the range 35 to 1000 micron. The effective temperatures derived from the measurements, supplemented by shorter wavelength Voyager data for Jupiter and Saturn, are 126.8 + or - 4.5 K, 93.4 + or - 3.3 K, 58.3 + or - 2.0 K, and 60.3 + or - 2.0 K, respectively. The implications of the measurements for bolometric output and for atmospheric structure and composition are discussed. The temperature spectrum of Jupiter shows a strong peak at approx. 350 microns followed by a deep valley at approx. 450 to 500 microns. Spectra derived from model atmospheres qualitatively reproduced these features but do not fit the data closely
    • …
    corecore