16,822 research outputs found
Nucleus-Nucleus Bremsstrahlung from Ultrarelativistic Collisions
The bremsstrahlung produced when heavy nuclei collide is estimated for
central collisions at the Relativistic Heavy Ion Collider. Soft photons can be
used to infer the rapidity distribution of the outgoing charge. An experimental
design is outlined.Comment: 12 pages, 7 figures, uses revte
Jet energy loss and high photon production in hot quark-gluon plasma
Jet-quenching and photon production at high transverse momentum are studied
at RHIC energies, together with the correlation between jets and photons. The
energy loss of hard partons traversing the hot QGP is evaluated in the AMY
formalism, consistently taking into account both induced gluon emission and
elastic collisions. The production of high photons in Au+Au collisions is
calculated, incorporating a complete set of photon-production channels. Putting
all these ingredients together with a (3+1)-dimensional ideal relativistic
hydrodynamical description of the thermal medium, we achieve a good description
of the current experimental data. Our results illustrate that the interaction
between hard jets and the soft medium is important for a complete understanding
of jet quenching, photon production, and photon-hadron correlations in
relativistic nuclear collisions.Comment: 4 pages, 4 figures - To appear in the conference proceedings for
Quark Matter 2009, March 30 - April 4, Knoxville, Tennesse
Zero range model of traffic flow
A multi--cluster model of traffic flow is studied, in which the motion of
cars is described by a stochastic master equation. Assuming that the escape
rate from a cluster depends only on the cluster size, the dynamics of the model
is directly mapped to the mathematically well-studied zero-range process.
Knowledge of the asymptotic behaviour of the transition rates for large
clusters allows us to apply an established criterion for phase separation in
one-dimensional driven systems. The distribution over cluster sizes in our
zero-range model is given by a one--step master equation in one dimension. It
provides an approximate mean--field dynamics, which, however, leads to the
exact stationary state. Based on this equation, we have calculated the critical
density at which phase separation takes place. We have shown that within a
certain range of densities above the critical value a metastable homogeneous
state exists before coarsening sets in. Within this approach we have estimated
the critical cluster size and the mean nucleation time for a condensate in a
large system. The metastablity in the zero-range process is reflected in a
metastable branch of the fundamental flux--density diagram of traffic flow. Our
work thus provides a possible analytical description of traffic jam formation
as well as important insight into condensation in the zero-range process.Comment: 10 pages, 13 figures, small changes are made according to finally
accepted version for publication in Phys. Rev.
Hydrogen-like Atoms from Ultrarelativistic Nuclear Collisions
The number of hydrogen-like atoms produced when heavy nuclei collide is
estimated for central collisions at the Relativistic Heavy Ion Collider using
the sudden approximation of Baym et al. As first suggested by Schwartz, a
simultaneous measurement of the hydrogen and hadron spectra will allow an
inference of the electron or muon spectra at low momentum where a direct
experimental measurement is not feasible.Comment: 6 pages, 4 figure
Quark Number Fluctuations in a Chiral Model at Finite Baryon Chemical Potential
We discuss the net quark and isovector fluctuations as well as off-diagonal
quark flavor susceptibilities along the chiral phase transition line in the
Nambu--Jona-Lasinio (NJL) model. The model is formulated at non-zero quark and
isospin chemical potentials with non-vanishing vector couplings in the
iso-scalar and iso-vector channels. We study the influence of the quark
chemical potential on the quark flavour susceptibilities in detail and the
dependence of the results on model parameters as well as on the quark mass. The
NJL model findings are compared with recent lattice results obtained in
two--flavor QCD at finite chemical potential. On a qualitative level, the NJL
model provides a consistent description of the dependence of quark number
fluctuations on temperature and baryon chemical potential. The phase diagram
and the position of the tricritical point in the NJL model are also discussed
for different parameter sets.Comment: 33 pages, 11 figures; final version accepted for publication in Phys.
Rev.
Nonequilibrium perturbation theory for spin-1/2 fields
A partial resummation of perturbation theory is described for field theories
containing spin-1/2 particles in states that may be far from thermal
equilibrium. This allows the nonequilibrium state to be characterized in terms
of quasiparticles that approximate its true elementary excitations. In
particular, the quasiparticles have dispersion relations that differ from those
of free particles, finite thermal widths and occupation numbers which, in
contrast to those of standard perturbation theory evolve with the changing
nonequilibrium environment. A description of this kind is essential for
estimating the evolution of the system over extended periods of time. In
contrast to the corresponding description of scalar particles, the structure of
nonequilibrium fermion propagators exhibits features which have no counterpart
in the equilibrium theory.Comment: 16 pages; no figures; submitted to Phys. Rev.
Color conductivity and ladder summation in hot QCD
The color conductivity is computed at leading logarithmic order using a Kubo
formula. We show how to sum an infinite series of planar ladder diagrams,
assuming some approximations based on the dominance of soft scattering
processes between hard particles in the plasma. The result agrees with the one
obtained previously from a kinetical approach.Comment: 15 pages, 4 figures. Explanations enlarged, two figures and some refs
added, typos corrected. Final version to be published in Phys.Rev.
Neutron and muon-induced background studies for the AMoRE double-beta decay experiment
AMoRE (Advanced Mo-based Rare process Experiment) is an experiment to search
a neutrinoless double-beta decay of Mo in molybdate crystals. The
neutron and muon-induced backgrounds are crucial to obtain the zero-background
level (< counts/(keVkgyr)) for the AMoRE-II experiment,
which is the second phase of the AMoRE project, planned to run at YEMI
underground laboratory. To evaluate the effects of neutron and muon-induced
backgrounds, we performed Geant4 Monte Carlo simulations and studied a
shielding strategy for the AMORE-II experiment. Neutron-induced backgrounds
were also included in the study. In this paper, we estimated the background
level in the presence of possible shielding structures, which meet the
background requirement for the AMoRE-II experiment
Anomalous Multiplicity Fluctuations from Phase Transitions in Heavy Ion Collisions
Event-by-event fluctuations and correlations between particles produced in
relativistic nuclear collisions are studied. The fluctuations in positive,
negative, total and net charge are closely related through correlations. In the
event of a phase transitions to a quark-gluon plasma, fluctuations in total and
net charge can be enhanced and reduced respectively which, however, is very
sensitive to the acceptance and centrality. If the colliding system experiences
strong density fluctuations due, e.g., to droplet formation in a first-order
phase transition, all fluctuations can be enhanced substantially. The
importance of fluctuations and correlations is exemplified by event-by-event
measurement of the multiplicities of 's and charged particles since
these observables should anti-correlate in the presence of co-mover or
anomalous absorption.Comment: revised version to appear in Phys. Rev. C, 5 page
- …
