512 research outputs found

    Query Expansion for Survey Question Retrieval in the Social Sciences

    Full text link
    In recent years, the importance of research data and the need to archive and to share it in the scientific community have increased enormously. This introduces a whole new set of challenges for digital libraries. In the social sciences typical research data sets consist of surveys and questionnaires. In this paper we focus on the use case of social science survey question reuse and on mechanisms to support users in the query formulation for data sets. We describe and evaluate thesaurus- and co-occurrence-based approaches for query expansion to improve retrieval quality in digital libraries and research data archives. The challenge here is to translate the information need and the underlying sociological phenomena into proper queries. As we can show retrieval quality can be improved by adding related terms to the queries. In a direct comparison automatically expanded queries using extracted co-occurring terms can provide better results than queries manually reformulated by a domain expert and better results than a keyword-based BM25 baseline.Comment: to appear in Proceedings of 19th International Conference on Theory and Practice of Digital Libraries 2015 (TPDL 2015

    Development of large-internal-surface-area nickel-metal plaques Final report, Jun. 18, 1964 - Sep. 30, 1965

    Get PDF
    Large internal surface area porous nickel metal plaques for rechargeable cadmium electrodes to improve nickel-cadmium batterie

    The polyphyly of Plasmodium: Comprehensive phylogenetic analyses of the malaria parasites (Order Haemosporida) reveal widespread taxonomic conflict

    Get PDF
    © 2018 The Authors. The evolutionary relationships among the apicomplexan blood pathogens known as the malaria parasites (order Haemosporida), some of which infect nearly 200 million humans each year, has remained a vexing phylogenetic problem due to limitations in taxon sampling, character sampling and the extreme nucleotide base composition biases that are characteristic of this clade. Previous phylogenetic work on the malaria parasites has often lacked sufficient representation of the broad taxonomic diversity within the Haemosporida or the multi-locus sequence data needed to resolve deep evolutionary relationships, rendering our understanding of haemosporidian lifehistory evolution and the origin of the human malaria parasites incomplete. Here we present the most comprehensive phylogenetic analysis of the malaria parasites conducted to date, using samples from a broad diversity of vertebrate hosts that includes numerous enigmatic and poorly known haemosporidian lineages in addition to genome-wide multi-locus sequence data. We find that if base composition differences were corrected for during phylogenetic analysis, we recovered a well-supported topology indicating that the evolutionary history of the malaria parasites was characterized by a complex series of transitions in life-history strategies and host usage. Notably we find that Plasmodium, the malaria parasite genus that includes the species of human medical concern, is polyphyletic with the life-history traits characteristic of this genus having evolved in a dynamic manner across the phylogeny. We find support for multiple instances of gain and loss of asexual proliferation in host blood cells and production of haemozoin pigment, two traits that have been used for taxonomic classification as well as considered to be important factors for parasite virulence and used as drug targets. Lastly, our analysis illustrates the need for a widespread reassessment of malaria parasite taxonomy

    Rapid Detection of Pathogenic Fungi from Clinical Specimens Using LightCycler Real-Time Fluorescence PCR

    Full text link
    In the study presented here a LightCycler real-time PCR system was used for the diagnosis of fungal infections from clinical tissue samples. Nine specimens were investigated from six patients with suspected or proven invasive fungal infections. Seven of nine samples were positive in a broad-range fungal PCR assay. In four samples, Aspergillus fumigatus was detected both by a species-specific hybridization assay as well as by sequencing of amplification products. In addition, the broad-range fungal PCR assay and PCR sequencing detected and identified, respectively, the following organisms in the specimens noted: Candida albicans in a culture-negative liver biopsy, Histoplasma capsulatum in a bone marrow sample, and Conidiobolus coronatus in a facial soft tissue specimen. Real-time PCR is a promising tool for the diagnosis of invasive fungal infections in human tissue samples and offers some advantages over culture methods, such as rapid analysis and increased sensitivit

    BrainPrint: Identifying Subjects by Their Brain

    Get PDF
    Introducing BrainPrint, a compact and discriminative representation of anatomical structures in the brain. BrainPrint captures shape information of an ensemble of cortical and subcortical structures by solving the 2D and 3D Laplace-Beltrami operator on triangular (boundary) and tetrahedral (volumetric) meshes. We derive a robust classifier for this representation that identifies the subject in a new scan, based on a database of brain scans. In an example dataset containing over 3000 MRI scans, we show that BrainPrint captures unique information about the subject’s anatomy and permits to correctly classify a scan with an accuracy of over 99.8%. All processing steps for obtaining the compact representation are fully automated making this processing framework particularly attractive for handling large datasets.Alexander von Humboldt-StiftungAthinoula A. Martinos Center for Biomedical Imaging (P41-RR014075)Athinoula A. Martinos Center for Biomedical Imaging (P41-EB015896)National Alliance for Medical Image Computing (U.S.) (U54-EB005149)Neuroimaging Analysis Center (U.S.) (P41-EB015902

    Accepting higher morbidity in exchange for sacrificing fewer animals in studies developing novel infection-control strategies.

    Get PDF
    Preventing bacterial infections from becoming the leading cause of death by the year 2050 requires the development of novel, infection-control strategies, building heavily on biomaterials science, including nanotechnology. Pre-clinical (animal) studies are indispensable for this development. Often, animal infection outcomes bear little relation to human clinical outcome. Here, we review conclusions from pathogen-inoculum dose-finding pilot studies for evaluation of novel infection-control strategies in murine models. Pathogen-inoculum doses are generally preferred that produce the largest differences in quantitative infection outcome parameters between a control and an experimental group, without death or termination of animals due to having reached an inhumane end-point during the study. However, animal death may represent a better end-point for evaluation than large differences in outcome parameters or number of days over which infection persists. The clinical relevance of lower pre-clinical outcomes, such as bioluminescence, colony forming units (CFUs) retrieved or more rapid clearance of infection is unknown, as most animals cure infection without intervention, depending on pathogen-species and pathogen-inoculum dose administered. In human clinical practice, patients suffering from infection present to hospital emergency wards, frequently in life-threatening conditions. Animal infection-models should therefore use prevention of death and recurrence of infection as primary efficacy targets to be addressed by novel strategies. To compensate for increased animal morbidity and mortality, animal experiments should solely be conducted for pre-clinical proof of principle and safety. With the advent of sophisticated in vitro models, we advocate limiting use of animal models when exploring pathogenesis or infection mechanisms
    • …
    corecore