1,027 research outputs found

    Greater functional diversity and redundancy of coral endolithic microbiomes align with lower coral bleaching susceptibility.

    Full text link
    The skeleton of reef-building coral harbors diverse microbial communities that could compensate for metabolic deficiencies caused by the loss of algal endosymbionts, i.e., coral bleaching. However, it is unknown to what extent endolith taxonomic diversity and functional potential might contribute to thermal resilience. Here we exposed Goniastrea edwardsi and Porites lutea, two common reef-building corals from the central Red Sea to a 17-day long heat stress. Using hyperspectral imaging, marker gene/metagenomic sequencing, and NanoSIMS, we characterized their endolithic microbiomes together with 15N and 13C assimilation of two skeletal compartments: the endolithic band directly below the coral tissue and the deep skeleton. The bleaching-resistant G. edwardsi was associated with endolithic microbiomes of greater functional diversity and redundancy that exhibited lower N and C assimilation than endoliths in the bleaching-sensitive P. lutea. We propose that the lower endolithic primary productivity in G. edwardsi can be attributed to the dominance of chemolithotrophs. Lower primary production within the skeleton may prevent unbalanced nutrient fluxes to coral tissues under heat stress, thereby preserving nutrient-limiting conditions characteristic of a stable coral-algal symbiosis. Our findings link coral endolithic microbiome structure and function to bleaching susceptibility, providing new avenues for understanding and eventually mitigating reef loss

    Theory of unitarity bounds and low energy form factors

    Full text link
    We present a general formalism for deriving bounds on the shape parameters of the weak and electromagnetic form factors using as input correlators calculated from perturbative QCD, and exploiting analyticity and unitarity. The values resulting from the symmetries of QCD at low energies or from lattice calculations at special points inside the analyticity domain can beincluded in an exact way. We write down the general solution of the corresponding Meiman problem for an arbitrary number of interior constraints and the integral equations that allow one to include the phase of the form factor along a part of the unitarity cut. A formalism that includes the phase and some information on the modulus along a part of the cut is also given. For illustration we present constraints on the slope and curvature of the K_l3 scalar form factor and discuss our findings in some detail. The techniques are useful for checking the consistency of various inputs and for controlling the parameterizations of the form factors entering precision predictions in flavor physics.Comment: 11 pages latex using EPJ style files, 5 figures; v2 is version accepted by EPJA in Tools section; sentences and figures improve

    Multivalued Fields on the Complex Plane and Conformal Field Theories

    Full text link
    In this paper a class of conformal field theories with nonabelian and discrete group of symmetry is investigated. These theories are realized in terms of free scalar fields starting from the simple bcb-c systems and scalar fields on algebraic curves. The Knizhnik-Zamolodchikov equations for the conformal blocks can be explicitly solved. Besides of the fact that one obtains in this way an entire class of theories in which the operators obey a nonstandard statistics, these systems are interesting in exploring the connection between statistics and curved space-times, at least in the two dimensional case.Comment: (revised version), 30 pages + one figure (not included), (requires harvmac.tex), LMU-TPW 92-1

    Diatom Biogeography, Temporal Dynamics, and Links to Bacterioplankton across Seven Oceanographic Time-Series Sites Spanning the Australian Continent.

    Full text link
    Diatom communities significantly influence ocean primary productivity and carbon cycling, but their spatial and temporal dynamics are highly heterogeneous and are governed by a complex diverse suite of abiotic and biotic factors. We examined the seasonal and biogeographical dynamics of diatom communities in Australian coastal waters using amplicon sequencing data (18S-16S rRNA gene) derived from a network of oceanographic time-series spanning the Australian continent. We demonstrate that diatom community composition in this region displays significant biogeography, with each site harbouring distinct community structures. Temperature and nutrients were identified as the key environmental contributors to differences in diatom communities at all sites, collectively explaining 21% of the variability observed in diatoms assemblages. However, specific groups of bacteria previously implicated in mutualistic ecological interactions with diatoms (Rhodobacteraceae, Flavobacteriaceae and Alteromonadaceae) also explained a further 4% of the spatial dynamics observed in diatom community structure. We also demonstrate that the two most temperate sites (Port Hacking and Maria Island) exhibited strong seasonality in diatom community and that at these sites, winter diatom communities co-occurred with higher proportion of Alteromonadaceae. In addition, we identified significant co-occurrence between specific diatom and bacterial amplicon sequence variants (ASVs), with members of the Roseobacter and Flavobacteria clades strongly correlated with some of the most abundant diatom genera (Skeletonema, Thalassiosira, and Cylindrotheca). We propose that some of these co-occurrences might be indicative of ecologically important interactions between diatoms and bacteria. Our analyses reveal that in addition to physico-chemical conditions (i.e., temperature, nutrients), the relative abundance of specific groups of bacteria appear to play an important role in shaping the spatial and temporal dynamics of marine diatom communities

    Transmission or within-host dynamics driving pulses of zoonotic viruses in reservoir-host populations

    Get PDF
    Progress in combatting zoonoses that emerge from wildlife is often constrained by limited knowledge of the biology of pathogens within reservoir hosts. We focus on the host–pathogen dynamics of four emerging viruses associated with bats: Hendra, Nipah, Ebola, and Marburg viruses. Spillover of bat infections to humans and domestic animals often coincides with pulses of viral excretion within bat populations, but the mechanisms driving such pulses are unclear. Three hypotheses dominate current research on these emerging bat infections. First, pulses of viral excretion could reflect seasonal epidemic cycles driven by natural variations in population densities and contact rates among hosts. If lifelong immunity follows recovery, viruses may disappear locally but persist globally through migration; in either case, new outbreaks occur once births replenish the susceptible pool. Second, epidemic cycles could be the result of waning immunity within bats, allowing local circulation of viruses through oscillating herd immunity. Third, pulses could be generated by episodic shedding from persistently infected bats through a combination of physiological and ecological factors. The three scenarios can yield similar patterns in epidemiological surveys, but strategies to predict or manage spillover risk resulting from each scenario will be different. We outline an agenda for research on viruses emerging from bats that would allow for differentiation among the scenarios and inform development of evidence-based interventions to limit threats to human and animal health. These concepts and methods are applicable to a wide range of pathogens that affect humans, domestic animals, and wildlife

    Constraining the low energy pion electromagnetic form factor with space-like data

    Full text link
    The pionic contribution to the g-2 of the muon involves a certain integral over the the modulus squared of F_\pi(t), the pion electromagnetic form factor. We extend techniques that use cut-plane analyticity properties of F_\pi(t) in order to account for present day estimates of the pionic contribution and experimental information at a finite number of points in the space-like region. Using data from several experiments over a large kinematic range for |t|, we find bounds on the expansion coefficients of F_\pi(t), sub-leading to the charge radius. The value of one of these coefficients in chiral perturbation theory respects these bounds. Furthermore, we present a sensitivity analysis to the inputs. A brief comparison with results in the literature that use observables other than the g-2 and timelike data is presented.Comment: 11 pages in EPJ journal style, to appear in European Physical Journal

    Sustainability appraisal: Jack of all trades, master of none?

    Get PDF
    Sustainable development is a commonly quoted goal for decision making and supports a large number of other discourses. Sustainability appraisal has a stated goal of supporting decision making for sustainable development. We suggest that the inherent flexibility of sustainability appraisal facilitates outcomes that often do not adhere to the three goals enshrined in most definitions of sustainable development: economic growth, environmental protection and enhancement, and the wellbeing of the human population. Current practice is for sustainable development to be disenfranchised through the interpretation of sustainability, whereby the best alternative is good enough even when unsustainable. Practitioners must carefully and transparently review the frameworks applied during sustainability appraisal to ensure that outcomes will meet the three goals, rather than focusing on a discourse that emphasises one or more goals at the expense of the other(s)

    Small-Molecule Hydrophobic Tagging Induced Degradation of HaloTag Fusion Proteins

    Get PDF
    The ability to regulate any protein of interest in living systems with small molecules remains a challenge. We hypothesized that appending a hydrophobic moiety to the surface of a protein would mimic the partially denatured state of the protein, thus engaging the cellular quality control machinery to induce its proteasomal degradation. We designed and synthesized bifunctional small molecules to bind a bacterial dehalogenase (the HaloTag protein) and present a hydrophobic group on its surface. Hydrophobic tagging of the HaloTag protein with an adamantyl moiety induced the degradation of cytosolic, isoprenylated and transmembrane HaloTag fusion proteins in cell culture. We demonstrated the in vivo utility of hydrophobic tagging by degrading proteins expressed in zebrafish embryos and by inhibiting Hras1G12V-driven tumor progression in mice. Therefore, hydrophobic tagging of HaloTag fusion proteins affords small-molecule control over any protein of interest, making it an ideal system for validating potential drug targets in disease models
    corecore