634 research outputs found

    On the decay of turbulence in plane Couette flow

    Full text link
    The decay of turbulent and laminar oblique bands in the lower transitional range of plane Couette flow is studied by means of direct numerical simulations of the Navier--Stokes equations. We consider systems that are extended enough for several bands to exist, thanks to mild wall-normal under-resolution considered as a consistent and well-validated modelling strategy. We point out a two-stage process involving the rupture of a band followed by a slow regression of the fragments left. Previous approaches to turbulence decay in wall-bounded flows making use of the chaotic transient paradigm are reinterpreted within a spatiotemporal perspective in terms of large deviations of an underlying stochastic process.Comment: ETC13 Conference Proceedings, 6 pages, 5 figure

    Secondary Instabilities of Surface Waves on Viscous Fluids in the Faraday Instability

    Full text link
    Secondary instabilities of Faraday waves show three regimes: (1) As seen previously, low-viscosity (nu) fluids destabilize first into squares. At higher driving accelerations a, squares show low-frequency modulations corresponding to the motion of phase defects, while theory predicts a stationary transverse amplitude modulation (TAM). (2) High-nu fluids destabilize first to stripes. Stripes then show an oscillatory TAM whose frequency is incommensurate with the driving frequency. At higher a, the TAM undergoes a phase instability. At still higher a, edge dislocations form and fluid droplets are ejected. (3) Intermediate-nu fluids show a complex coexistence of squares and stripes, as well as stationary and oscillatory TAM instabilities of the stripes.Comment: REVTEX, with 3 separate uuencoded figures, to appear in Europhys. Let

    Grain boundary motion in layered phases

    Full text link
    We study the motion of a grain boundary that separates two sets of mutually perpendicular rolls in Rayleigh-B\'enard convection above onset. The problem is treated either analytically from the corresponding amplitude equations, or numerically by solving the Swift-Hohenberg equation. We find that if the rolls are curved by a slow transversal modulation, a net translation of the boundary follows. We show analytically that although this motion is a nonlinear effect, it occurs in a time scale much shorter than that of the linear relaxation of the curved rolls. The total distance traveled by the boundary scales as ϵ1/2\epsilon^{-1/2}, where ϵ\epsilon is the reduced Rayleigh number. We obtain analytical expressions for the relaxation rate of the modulation and for the time dependent traveling velocity of the boundary, and especially their dependence on wavenumber. The results agree well with direct numerical solutions of the Swift-Hohenberg equation. We finally discuss the implications of our results on the coarsening rate of an ensemble of differently oriented domains in which grain boundary motion through curved rolls is the dominant coarsening mechanism.Comment: 16 pages, 5 figure

    An optical fiber based interferometer to measure velocity profiles in sheared complex fluids

    Full text link
    We describe an optical fiber based interferometer to measure velocity profiles in sheared complex fluids using Dynamic Light Scattering (DLS). After a review of the theoretical problem of DLS under shear, a detailed description of the setup is given. We outline the various experimental difficulties induced by refraction when using a Couette cell. We also show that homodyne DLS is not well suited to measure quantitative velocity profiles in narrow-gap Couette geometries. On the other hand, the heterodyne technique allows us to determine the velocity field inside the gap of a Couette cell. All the technical features of the setup, namely its spatial resolution (50\approx 50--100μ100 \mum) and its temporal resolution (1\approx 1 s per point, 1\approx 1 min per profile) are discussed, as well as the calibration procedure with a Newtonian fluid. As briefly shown on oil-in-water emulsions, such a setup permits one to record both velocity profiles and rheological data simultaneouslyComment: 13 pages, 16 figures, Submitted to Eur. Phys. J. A

    Logarithmic periodicities in the bifurcations of type-I intermittent chaos

    Full text link
    The critical relations for statistical properties on saddle-node bifurcations are shown to display undulating fine structure, in addition to their known smooth dependence on the control parameter. A piecewise linear map with the type-I intermittency is studied and a log-periodic dependence is numerically obtained for the average time between laminar events, the Lyapunov exponent and attractor moments. The origin of the oscillations is built in the natural probabilistic measure of the map and can be traced back to the existence of logarithmically distributed discrete values of the control parameter giving Markov partition. Reinjection and noise effect dependences are discussed and indications are given on how the oscillations are potentially applicable to complement predictions made with the usual critical exponents, taken from data in critical phenomena.Comment: 4 pages, 6 figures, accepted for publication in PRL (2004

    Dynamics of Strongly Deformed Polymers in Solution

    Full text link
    Bead spring models for polymers in solution are nonlinear if either the finite extensibility of the polymer, excluded volume effects or hydrodynamic interactions between polymer segments are taken into account. For such models we use a powerful method for the determination of the complete relaxation spectrum of fluctuations at {\it steady state}. In general, the spectrum and modes differ significantly from those of the linear Rouse model. For a tethered polymer in uniform flow the differences are mainly caused by an inhomogeneous distribution of tension along the chain and are most pronounced due to the finite chain extensibility. Beyond the dynamics of steady state fluctuations we also investigate the nonlinear response of the polymer to a {\em large sudden change} in the flow. This response exhibits several distinct regimes with characteristic decay laws and shows features which are beyond the scope of single mode theories such as the dumbbell model.Comment: 7 pages, 3 figure

    Stationary and Oscillatory Spatial Patterns Induced by Global Periodic Switching

    Full text link
    We propose a new mechanism for pattern formation based on the global alternation of two dynamics neither of which exhibits patterns. When driven by either one of the separate dynamics, the system goes to a spatially homogeneous state associated with that dynamics. However, when the two dynamics are globally alternated sufficiently rapidly, the system exhibits stationary spatial patterns. Somewhat slower switching leads to oscillatory patterns. We support our findings by numerical simulations and discuss the results in terms of the symmetries of the system and the ratio of two relevant characteristic times, the switching period and the relaxation time to a homogeneous state in each separate dynamics.Comment: REVTEX preprint: 12 pages including 1 (B&W) + 3 (COLOR) figures (to appear in Physical Review Letters

    Electrostatic and electrokinetic contributions to the elastic moduli of a driven membrane

    Get PDF
    We discuss the electrostatic contribution to the elastic moduli of a cell or artificial membrane placed in an electrolyte and driven by a DC electric field. The field drives ion currents across the membrane, through specific channels, pumps or natural pores. In steady state, charges accumulate in the Debye layers close to the membrane, modifying the membrane elastic moduli. We first study a model of a membrane of zero thickness, later generalizing this treatment to allow for a finite thickness and finite dielectric constant. Our results clarify and extend the results presented in [D. Lacoste, M. Cosentino Lagomarsino, and J. F. Joanny, Europhys. Lett., {\bf 77}, 18006 (2007)], by providing a physical explanation for a destabilizing term proportional to \kps^3 in the fluctuation spectrum, which we relate to a nonlinear (E2E^2) electro-kinetic effect called induced-charge electro-osmosis (ICEO). Recent studies of ICEO have focused on electrodes and polarizable particles, where an applied bulk field is perturbed by capacitive charging of the double layer and drives flow along the field axis toward surface protrusions; in contrast, we predict "reverse" ICEO flows around driven membranes, due to curvature-induced tangential fields within a non-equilibrium double layer, which hydrodynamically enhance protrusions. We also consider the effect of incorporating the dynamics of a spatially dependent concentration field for the ion channels.Comment: 22 pages, 10 figures. Under review for EPJ

    Two-Component Fluid Membranes Near Repulsive Walls: Linearized Hydrodynamics of Equilibrium and Non-equilibrium States

    Full text link
    We study the linearized hydrodynamics of a two-component fluid membrane near a repulsive wall, via a model which incorporates curvature- concentration coupling as well as hydrodynamic interactions. This model is a simplified version of a recently proposed one [J.-B. Manneville et al. Phys. Rev. E, 64, 021908 (2001)] for non-equilibrium force-centres embedded in fluid membranes, such as light-activated bacteriorhodopsin pumps incorporated in phospholipid (EPC) bilayers. The pump/membrane system is modeled as an impermeable, two-component bilayer fluid membrane in the presence of an ambient solvent, in which one component, representing active pumps, is described in terms of force dipoles displaced with respect to the bilayer midpoint. We first discuss the case in which such pumps are rendered inactive, computing the mode structure in the bulk as well as the modification of hydrodynamic properties by the presence of a nearby wall. We then discuss the fluctuations and mode structure in steady state of active two-component membranes near a repulsive wall. We find that proximity to the wall smoothens membrane height fluctuations in the stable regime, resulting in a logarithmic scaling of the roughness even for initially tensionless membranes. This explicitly non-equilibrium result, a consequence of the incorporation of curvature-concentration coupling in our treatment, also indicates that earlier scaling arguments which obtained an increase in the roughness of active membranes near repulsive walls may need to be reevaluated.Comment: 39 page Latex file, 3 encapsulated Postscript figure

    Velocity profiles in shear-banding wormlike micelles

    Full text link
    Using Dynamic Light Scattering in heterodyne mode, we measure velocity profiles in a much studied system of wormlike micelles (CPCl/NaSal) known to exhibit both shear-banding and stress plateau behavior. Our data provide evidence for the simplest shear-banding scenario, according to which the effective viscosity drop in the system is due to the nucleation and growth of a highly sheared band in the gap, whose thickness linearly increases with the imposed shear rate. We discuss various details of the velocity profiles in all the regions of the flow curve and emphasize on the complex, non-Newtonian nature of the flow in the highly sheared band.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let
    corecore