130,151 research outputs found
Structure-property characterization of rheocast and VADER processed IN-100 superalloy
Two recent solidification processes have been applied in the production of IN-100 nickel-base superalloy: rheocasting and vacuum arc double electrode remelting (VADER). A detailed microstructural examination has been made of the products of these two processes; associated tensile strength and fatigue crack propagation (FCP) rate at an elevated temperature were evaluated. In rheocasting, processing variables that have been evaluated include stirring speed, isothermal stirring time and volume fraction solid during isothermal stirring. VADER processed IN-100 was purchased from Special Metals Corp., New Hartford, NY. As-cast ingots were subjected to hot isostatic pressing (HIP) and heat treatment. Both rheocasting and VADER processed materials yield fine and equiaxed spherical structures, with reduced macrosegregation in comparison to ingot materials. The rheocast structures are discussed on the basis of the Vogel-Doherty-Cantor model of dendrite arm fragmentation. The rheocast ingots evaluated were superior in yield strength to both VADER and commercially cast IN-100 alloy. Rheocast and VADER ingots may have higher crack propagation resistance than P/M processed material
Controlling the accuracy of unconditionally stable algorithms in Cahn-Hilliard Equation
Given an unconditionally stable algorithm for solving the Cahn-Hilliard
equation, we present a general calculation for an analytic time step \d \tau
in terms of an algorithmic time step \dt. By studying the accumulative
multi-step error in Fourier space and controlling the error with arbitrary
accuracy, we determine an improved driving scheme \dt=At^{2/3} and confirm
the numerical results observed in a previous study \cite{Cheng1}.Comment: 4 pages, late
A simple mean field equation for condensates in the BEC-BCS crossover regime
We present a mean field approach based on pairs of fermionic atoms to
describe condensates in the BEC-BCS crossover regime. By introducing an
effective potential, the mean field equation allows us to calculate the
chemical potential, the equation of states and the atomic correlation function.
The results agree surprisingly well with recent quantum Monte Carlo
calculations. We show that the smooth crossover from the bosonic mean field
repulsion between molecules to the Fermi pressure among atoms is associated
with the evolution of the atomic correlation function
Haar expectations of ratios of random characteristic polynomials
We compute Haar ensemble averages of ratios of random characteristic
polynomials for the classical Lie groups K = O(N), SO(N), and USp(N). To that
end, we start from the Clifford-Weyl algebera in its canonical realization on
the complex of holomorphic differential forms for a C-vector space V. From it
we construct the Fock representation of an orthosymplectic Lie superalgebra osp
associated to V. Particular attention is paid to defining Howe's oscillator
semigroup and the representation that partially exponentiates the Lie algebra
representation of sp in osp. In the process, by pushing the semigroup
representation to its boundary and arguing by continuity, we provide a
construction of the Shale-Weil-Segal representation of the metaplectic group.
To deal with a product of n ratios of characteristic polynomials, we let V =
C^n \otimes C^N where C^N is equipped with its standard K-representation, and
focus on the subspace of K-equivariant forms. By Howe duality, this is a
highest-weight irreducible representation of the centralizer g of Lie(K) in
osp. We identify the K-Haar expectation of n ratios with the character of this
g-representation, which we show to be uniquely determined by analyticity, Weyl
group invariance, certain weight constraints and a system of differential
equations coming from the Laplace-Casimir invariants of g. We find an explicit
solution to the problem posed by all these conditions. In this way we prove
that the said Haar expectations are expressed by a Weyl-type character formula
for all integers N \ge 1. This completes earlier work by Conrey, Farmer, and
Zirnbauer for the case of U(N).Comment: LaTeX, 70 pages, Complex Analysis and its Synergies (2016) 2:
Recommended from our members
SLS Processing Studies of Nylon 11 Nanocomposites
Selective Laser Sintering (SLS) is widely used for rapid prototyping/manufacturing of
nylon 11 and nylon 12 parts. This processing technique has not been explored for
nylon nanocomposites. This study investigates the technicalities of processing nylon
11-clay and nylon-carbon nanofiber nanocomposites with SLS. Microstructural
analyses of the SLS powders and parts were conducted under SEM. Results suggest
that SLS processing is possible with the new nylon 11 nanocomposites. Yet the SLS
parts built have inferior properties relative to those of injection molding, suggesting
that more fine tuning for the processing is required.Mechanical Engineerin
A BGG-type resolution for tensor modules over general linear superalgebra
We construct a Bernstein-Gelfand-Gelfand type resolution in terms of direct
sums of Kac modules for the finite-dimensional irreducible tensor
representations of the general linear superalgebra. As a consequence it follows
that the unique maximal submodule of a corresponding reducible Kac module is
generated by its proper singular vector.Comment: 11pages, LaTeX forma
The Gibbs free energy of homogeneous nucleation: from atomistic nuclei to the planar limit
In this paper we discuss how the information contained in atomistic
simulations of homogeneous nucleation should be used when fitting the
parameters in macroscopic nucleation models. We show how the number of solid
and liquid atoms in such simulations can be determined unambiguously by using a
Gibbs dividing surface and how the free energy as a function of the number of
solid atoms in the nucleus can thus be extracted. We then show that the
parameters of a model based on classical nucleation theory can be fit using the
information contained in these free-energy profiles but that the parameters in
such models are highly correlated. This correlation is unfortunate as it
ensures that small errors in the computed free energy surface can give rise to
large errors in the extrapolated properties of the fitted model. To resolve
this problem we thus propose a method for fitting macroscopic nucleation models
that uses simulations of planar interfaces and simulations of three-dimensional
nuclei in tandem. We show that when the parameters of the macroscopic model are
fitted in this way the numerical errors for the final fitted model are smaller
and that the extrapolated predictions for large nuclei are thus more reliable
Transport properties for a Luttinger liquid wire with Rashba spin-orbit coupling and Zeeman splitting
We study the transport properties for a Luttinger-liquid (LL) quantum wire in
the presence of both Rashba spin-orbit coupling (SOC) and a weak external
in-plane magnetic field. The bosonized Hamiltonian of the system with an
externally applied longitudinal electric field is established. And then the
equations of motion for the bosonic phase fields are solved in the Fourier
space, with which the both charge and spin conductivities for the system are
calculated analytically based on the linear response theory. Generally, the ac
conductivity is an oscillation function of the strengths of electron-electron
interaction, Rashba SOC and magnetic field, as well as the driving frequency
and the measurement position in the wire. Through analysis with some examples
it is demonstrated that the modification on the conductivity due to
electron-electron interactions is more remarkable than that due to SOC, while
the effects of SOC and Zeeman splitting on the conductivity are very similar.
The spin-polarized conductivities for the system in the absence of Zeeman
effect or SOC are also discussed, respectively. The ratio of the spin-polarized
conductivities is dependent of the
electron-electron interactions for the system without SOC, while it is
independent of the electron-electron interactions for the system without Zeeman
splitting.Comment: 10 pages, 8 figure
Spin fluctuations and superconductivity in a 3D tight-binding model for BaFe2As2
Despite the wealth of experimental data on the Fe-pnictide compounds of the
KFe2As2-type, K = Ba, Ca, or Sr, the main theoretical work based on
multiorbital tight-binding models has been restricted so far to the study of
the related 1111 compounds. This can be ascribed to the more three dimensional
electronic structure found by ab initio calculations for the 122 materials,
making this system less amenable to model development. In addition, the more
complicated Brillouin zone (BZ) of the body-centered tetragonal symmetry does
not allow a straightforward unfolding of the electronic band structure into an
effective 1Fe/unit cell BZ. Here we present an effective 5-orbital
tight-binding fit of the full DFT band structure for BaFeAs including the kz
dispersions. We compare the 5-orbital spin fluctuation model to one previously
studied for LaOFeAs and calculate the RPA enhanced susceptibility. Using the
fluctuation exchange approximation to determine the leading pairing
instability, we then examine the differences between a strictly two dimensional
model calculation over a single kz cut of the BZ and a completely three
dimensional approach. We find pairing states quite similar to the 1111
materials, with generic quasi-isotropic pairing on the hole sheets and nodal
states on the electron sheets at kz = 0 which however are gapped as the system
is hole doped. On the other hand, a substantial kz dependence of the order
parameter remains, with most of the pairing strength deriving from processes
near kz = pi. These states exhibit a tendency for an enhanced anisotropy on the
hole sheets and a reduced anisotropy on the electron sheets near the top of the
BZ.Comment: 12 pages, 15 figure
- …
