159 research outputs found

    Performance of Oxoid Brilliance™ MRSA medium for detection of methicillin-resistant Staphylococcus aureus: an in vitro study

    Get PDF
    Oxoid Brilliance™ MRSA was evaluated for its ability to identify methicillin-resistant Staphylococcus aureus. A well-defined collection of staphylococci was used (n = 788). After 20 h incubation, the sensitivity was 99.6% and the specificity was 97.3%. This new medium is a highly sensitive method of screening for MRSA

    Evaluation of a fourth-generation latex agglutination test for the identification of Staphylococcus aureus

    Get PDF
     In this study, we evaluated a fourth-generation agglutination assay (Staph Plus; DiaMondiaL[DML]) for the rapid identification of Staphylococcus aureus. First, comparison with three third-generation assays (Slidex Staph Plus, bioMérieux; Staphaurex Plus, Murex Diagnostics; Pastorex Staph-Plus, Sanofi Diagnostics Pasteur) was performed on a predefined strain collection: 265 coagulase-negative staphylococci (CNS), 266 methicillin-resistant S. aureus (MRSA) and 262 methicillin-susceptible S. aureus (MSSA) strains (“strain study”). Second, patient material-derived strains (883 CNS, 847 MSSA and 135 MRSA) were tested concurrently with both the DML and Slidex assays (“daily practice study”). In the strain study, the overall sensitivity and specificity of the DML, Slidex, Staphaurex and Pastorex assays were 99.2% and 100%, 98.1% and 100%, 95.2% and 100%, and 98.2% and 98.8%, respectively. Using the respective tests, the result was indeterminate in 0.0%, 0.6%, 0.4% and 1.5% of the strains. Overall, the sensitivity of the DML and Slidex assays were comparable in both sub-studies. However, in MRSA strains, the sensitivity of the DML assay was significantly lower than the Slidex assay. The specificity of the Slidex assay was significantly higher than the DML assay. However, the percentage of indeterminate results was much higher for the Slidex than the DML assay. In conclusion, the presumptive identification of S. aureus by the DML assay proved to be equal to third-generation latex agglutination assays

    Unsupervised Clustering of Quantitative Imaging Phenotypes using Autoencoder and Gaussian Mixture Model

    Full text link
    Quantitative medical image computing (radiomics) has been widely applied to build prediction models from medical images. However, overfitting is a significant issue in conventional radiomics, where a large number of radiomic features are directly used to train and test models that predict genotypes or clinical outcomes. In order to tackle this problem, we propose an unsupervised learning pipeline composed of an autoencoder for representation learning of radiomic features and a Gaussian mixture model based on minimum message length criterion for clustering. By incorporating probabilistic modeling, disease heterogeneity has been taken into account. The performance of the proposed pipeline was evaluated on an institutional MRI cohort of 108 patients with colorectal cancer liver metastases. Our approach is capable of automatically selecting the optimal number of clusters and assigns patients into clusters (imaging subtypes) with significantly different survival rates. Our method outperforms other unsupervised clustering methods that have been used for radiomics analysis and has comparable performance to a state-of-the-art imaging biomarker.Comment: Accepted at MICCAI 201

    Deep Learning versus Classical Regression for Brain Tumor Patient Survival Prediction

    Full text link
    Deep learning for regression tasks on medical imaging data has shown promising results. However, compared to other approaches, their power is strongly linked to the dataset size. In this study, we evaluate 3D-convolutional neural networks (CNNs) and classical regression methods with hand-crafted features for survival time regression of patients with high grade brain tumors. The tested CNNs for regression showed promising but unstable results. The best performing deep learning approach reached an accuracy of 51.5% on held-out samples of the training set. All tested deep learning experiments were outperformed by a Support Vector Classifier (SVC) using 30 radiomic features. The investigated features included intensity, shape, location and deep features. The submitted method to the BraTS 2018 survival prediction challenge is an ensemble of SVCs, which reached a cross-validated accuracy of 72.2% on the BraTS 2018 training set, 57.1% on the validation set, and 42.9% on the testing set. The results suggest that more training data is necessary for a stable performance of a CNN model for direct regression from magnetic resonance images, and that non-imaging clinical patient information is crucial along with imaging information.Comment: Contribution to The International Multimodal Brain Tumor Segmentation (BraTS) Challenge 2018, survival prediction tas

    Coronary Artery Plaque Characterization from CCTA Scans Using Deep Learning and Radiomics

    Get PDF
    Assessing coronary artery plaque segments in coronary CT angiography scans is an important task to improve patient management and clinical outcomes, as it can help to decide whether invasive investigation and treatment are necessary. In this work, we present three machine learning approaches capable of performing this task. The first approach is based on radiomics, where a plaque segmentation is used to calculate various shape-, intensity- and texture-based features under different image transformations. A second approach is based on deep learning and relies on centerline extraction as sole prerequisite. In the third approach, we fuse the deep learning approach with radiomic features. On our data the methods reached similar scores as simulated fractional flow reserve (FFR) measurements, which - in contrast to our methods - requires an exact segmentation of the whole coronary tree and often time-consuming manual interaction. In literature, the performance of simulated FFR reaches an AUC between 0.79–0.93 predicting an abnormal invasive FFR that demands revascularization. The radiomics approach achieves an AUC of 0.84, the deep learning approach 0.86 and the combined method 0.88 for predicting the revascularization decision directly. While all three proposed methods can be determined within seconds, the FFR simulation typically takes several minutes. Provided representative training data in sufficient quantities, we believe that the presented methods can be used to create systems for fully automatic non-invasive risk assessment for a variety of adverse cardiac events

    A Feature-Pooling and Signature-Pooling Method for Feature Selection for Quantitative Image Analysis: Application to a Radiomics Model for Survival in Glioma

    Get PDF
    We proposed a pooling-based radiomics feature selection method and showed how it would be applied to the clinical question of predicting one-year survival in 130 patients treated for glioma by radiotherapy. The method combines filter, wrapper and embedded selection in a comprehensive process to identify useful features and build them into a potentially predictive signature. The results showed that non-invasive CT radiomics were able to moderately predict overall survival and predict WHO tumour grade. This study reveals an associative inter-relationship between WHO tumour grade, CT-based radiomics and survival, that could be clinically relevant

    Gross tumour volume delineation in anal cancer on T2-weighted and diffusion-weighted MRI - Reproducibility between radiologists and radiation oncologists and impact of reader experience level and DWI image quality

    Get PDF
    Abstract Purpose To assess how gross tumour volume (GTV) delineation in anal cancer is affected by interobserver variations between radiologists and radiation oncologists, expertise level, and use of T2-weighted MRI (T2W-MRI) vs. diffusion-weighted imaging (DWI), and to explore effects of DWI quality. Methods and materials We retrospectively analyzed the MRIs (T2W-MRI and b800-DWI) of 25 anal cancer patients. Four readers (Senior and Junior Radiologist; Senior and Junior Radiation Oncologist) independently delineated GTVs, first on T2W-MRI only and then on DWI (with reference to T2W-MRI). Maximum Tumour Diameter (MTD) was calculated from each GTV. Mean GTVs/MTDs were compared between readers and between T2W-MRI vs. DWI. Interobserver agreement was calculated as Intraclass Correlation Coefficient (ICC), Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD). DWI image quality was assessed using a 5-point artefact scale. Results Interobserver agreement between radiologists vs. radiation oncologists and between junior vs. senior readers was good–excellent, with similar agreement for T2W-MRI and DWI (e.g. ICCs 0.72–0.94 for T2W-MRI and 0.68–0.89 for DWI). There was a trend towards smaller GTVs on DWI, but only for the radiologists (P = 0.03–0.07). Moderate-severe DWI-artefacts were observed in 11/25 (44%) cases. Agreement tended to be lower in these cases. Conclusion Overall interobserver agreement for anal cancer GTV delineation on MRI is good for both radiologists and radiation oncologists, regardless of experience level. Use of DWI did not improve agreement. DWI artefacts affecting GTV delineation occurred in almost half of the patients, which may severely limit the use of DWI for radiotherapy planning if no steps are undertaken to avoid them

    Outcomes and potential impact of a virtual hands-on training program on MRI staging confidence and performance in rectal cancer

    Get PDF
    Objectives: To explore the potential impact of a dedicated virtual training course on MRI staging confidence and performance in rectal cancer. // Methods: Forty-two radiologists completed a stepwise virtual training course on rectal cancer MRI staging composed of a pre-course (baseline) test with 7 test cases (5 staging, 2 restaging), a 1-day online workshop, 1 month of individual case readings (n = 70 cases with online feedback), a live online feedback session supervised by two expert faculty members, and a post-course test. The ESGAR structured reporting templates for (re)staging were used throughout the course. Results of the pre-course and post-course test were compared in terms of group interobserver agreement (Krippendorf’s alpha), staging confidence (perceived staging difficulty), and diagnostic accuracy (using an expert reference standard). // Results: Though results were largely not statistically significant, the majority of staging variables showed a mild increase in diagnostic accuracy after the course, ranging between + 2% and + 17%. A similar trend was observed for IOA which improved for nearly all variables when comparing the pre- and post-course. There was a significant decrease in the perceived difficulty level (p = 0.03), indicating an improved diagnostic confidence after completion of the course. // Conclusions: Though exploratory in nature, our study results suggest that use of a dedicated virtual training course and web platform has potential to enhance staging performance, confidence, and interobserver agreement to assess rectal cancer on MRI virtual training and could thus be a good alternative (or addition) to in-person training. // Clinical relevance statement: Rectal cancer MRI reporting quality is highly dependent on radiologists’ expertise, stressing the need for dedicated training/teaching. This study shows promising results for a virtual web-based training program, which could be a good alternative (or addition) to in-person training. // Key Points: • Rectal cancer MRI reporting quality is highly dependent on radiologists’ expertise, stressing the need for dedicated training and teaching. • Using a dedicated virtual training course and web-based platform, encouraging first results were achieved to improve staging accuracy, diagnostic confidence, and interobserver agreement. • These exploratory results suggest that virtual training could thus be a good alternative (or addition) to in-person training

    Antiseizure medication withdrawal risk estimation and recommendations: A survey of American Academy of Neurology and EpiCARE members

    Get PDF
    Objective Choosing candidates for antiseizure medication (ASM) withdrawal in well‐controlled epilepsy is challenging. We evaluated (a) the correlation between neurologists' seizure risk estimation (“clinician predictions”) vs calculated predictions, (b) how viewing calculated predictions influenced recommendations, and (c) barriers to using risk calculation.MethodsWe asked US and European neurologists to predict 2‐year seizure risk after ASM withdrawal for hypothetical vignettes. We compared ASM withdrawal recommendations before vs after viewing calculated predictions, using generalized linear models. Results Three‐hundred and forty‐six neurologists responded. There was moderate correlation between clinician and calculated predictions (Spearman coefficient 0.42). Clinician predictions varied widely, for example, predictions ranged 5%‐100% for a 2‐year seizure‐free adult without epileptiform abnormalities. Mean clinician predictions exceeded calculated predictions for vignettes with epileptiform abnormalities (eg, childhood absence epilepsy: clinician 65%, 95% confidence interval [CI] 57%‐74%; calculated 46%) and surgical vignettes (eg, focal cortical dysplasia 6‐month seizure‐free mean clinician 56%, 95% CI 52%‐60%; calculated 28%). Clinicians overestimated the influence of epileptiform EEG findings on withdrawal risk (26%, 95% CI 24%‐28%) compared with calculators (14%, 95% 13%‐14%). Viewing calculated predictions slightly reduced willingness to withdraw (−0.8/10 change, 95% CI −1.0 to −0.7), particularly for vignettes without epileptiform abnormalities. The greatest barrier to calculator use was doubting its accuracy (44%). Significance Clinicians overestimated the influence of abnormal EEGs particularly for low‐risk patients and overestimated risk and the influence of seizure‐free duration for surgical patients, compared with calculators. These data may question widespread ordering of EEGs or time‐based seizure‐free thresholds for surgical patients. Viewing calculated predictions reduced willingness to withdraw particularly without epileptiform abnormalities
    corecore