5,983 research outputs found

    Optical Lenses for Atomic Beams

    Get PDF
    Superpositions of paraxial laser beam modes to generate atom-optical lenses based on the optical dipole force are investigated theoretically. Thin, wide, parabolic, cylindrical and circular atom lenses with numerical apertures much greater than those reported in the literature to date can be synthesized. This superposition approach promises to make high quality atom beam imaging and nano-deposition feasible.Comment: 10 figure

    Impact of a large wildfire on water-soluble organic aerosol in a major urban area: the 2009 Station Fire in Los Angeles County

    Get PDF
    This study examines the nature of water-soluble organic aerosol measured in Pasadena, CA, under typical conditions and under the influence of a large wildfire (the 2009 Station Fire). During non-fire periods, water-soluble organic carbon (WSOC) variability was driven by photochemical production processes and sea breeze transport, resulting in an average diurnal cycle with a maximum at 15:00 local time (up to 4.9 μg C m^(−3)). During the Station Fire, primary production was a key formation mechanism for WSOC. High concentrations of WSOC (up to 41 μg C m^(−3)) in smoke plumes advected to the site in the morning hours were tightly correlated with nitrate and chloride, numerous aerosol mass spectrometer (AMS) organic mass spectral markers, and total non-refractory organic mass. Processed residual smoke was transported to the measurement site by the sea breeze later in the day, leading to higher afternoon WSOC levels than on non-fire days. Parameters representing higher degrees of oxidation of organics, including the ratios of the organic metrics m/z 44:m/z 57 and m/z 44:m/z 43, were elevated in those air masses. Intercomparisons of relative amounts of WSOC, organics, m/z 44, and m/z 43 show that the fraction of WSOC comprising acid-oxygenates increased as a function of photochemical aging owing to the conversion of aliphatic and non-acid oxygenated organics to more acid-like organics. The contribution of water-soluble organic species to the organic mass budget (10th–90th percentile values) ranged between 27 %–72 % and 27 %–68 % during fire and non-fire periods, respectively. The seasonal incidence of wildfires in the Los Angeles Basin greatly enhances the importance of water-soluble organics, which has implications for the radiative and hygroscopic properties of the regional aerosol

    Probing nn-Spin Correlations in Optical Lattices

    Full text link
    We propose a technique to measure multi-spin correlation functions of arbitrary range as determined by the ground states of spinful cold atoms in optical lattices. We show that an observation of the atomic version of the Stokes parameters, using focused lasers and microwave pulsing, can be related to nn-spin correlators. We discuss the possibility of detecting not only ground state static spin correlations, but also time-dependent spin wave dynamics as a demonstrative example using our proposed technique.Comment: 7 pages, 4 figure

    Compression of Atomic Phase Space Using an Asymmetric One-Way Barrier

    Full text link
    We show how to construct asymmetric optical barriers for atoms. These barriers can be used to compress phase space of a sample by creating a confined region in space where atoms can accumulate with heating at the single photon recoil level. We illustrate our method with a simple two-level model and then show how it can be applied to more realistic multi-level atoms

    Universality and Critical Behavior at the Mott transition

    Full text link
    We report conductivity measurements of Cr-doped V2O3 using a variable pressure technique. The critical behavior of the conductivity near the Mott-insulator to metal critical endpoint is investigated in detail as a function of pressure and temperature. The critical exponents are determined, as well as the scaling function associated with the equation of state. The universal properties of a liquid-gas transition are found. This is potentially a generic description of the Mott critical endpoint in correlated electron materials.Comment: 3 figure

    Andreev reflection in bosonic condensates

    Full text link
    We study the bosonic analog of Andreev reflection at a normal-superfluid interface where the superfluid is a boson condensate. We model the normal region as a zone where nonlinear effects can be neglected. Against the background of a decaying condensate, we identify a novel contribution to the current of reflected atoms. The group velocity of this Andreev reflected component differs from that of the normally reflected one. For a three-dimensional planar or two-dimensional linear interface Andreev reflection is neither specular nor conjugate.Comment: 5 pages, 3 figures. Text revise

    Atom cooling by non-adiabatic expansion

    Full text link
    Motivated by the recent discovery that a reflecting wall moving with a square-root in time trajectory behaves as a universal stopper of classical particles regardless of their initial velocities, we compare linear in time and square-root in time expansions of a box to achieve efficient atom cooling. For the quantum single-atom wavefunctions studied the square-root in time expansion presents important advantages: asymptotically it leads to zero average energy whereas any linear in time (constant box-wall velocity) expansion leaves a non-zero residual energy, except in the limit of an infinitely slow expansion. For finite final times and box lengths we set a number of bounds and cooling principles which again confirm the superior performance of the square-root in time expansion, even more clearly for increasing excitation of the initial state. Breakdown of adiabaticity is generally fatal for cooling with the linear expansion but not so with the square-root expansion.Comment: 4 pages, 4 figure

    Laser cooling of new atomic and molecular species with ultrafast pulses

    Full text link
    We propose a new laser cooling method for atomic species whose level structure makes traditional laser cooling difficult. For instance, laser cooling of hydrogen requires single-frequency vacuum-ultraviolet light, while multielectron atoms need single-frequency light at many widely separated frequencies. These restrictions can be eased by laser cooling on two-photon transitions with ultrafast pulse trains. Laser cooling of hydrogen, antihydrogen, and many other species appears feasible, and extension of the technique to molecules may be possible.Comment: revision of quant-ph/0306099, submitted to PR

    Three-Way Entanglement and Three-Qubit Phase Gate Based on a Coherent Six-Level Atomic System

    Full text link
    We analyze the nonlinear optical response of a six-level atomic system under a configuration of electromagnetically induced transparency. The giant fifth-order nonlinearity generated in such a system with a relatively large cross-phase modulation effect can produce efficient three-way entanglement and may be used for realizing a three-qubit quantum phase gate. We demonstrate that such phase gate can be transferred to a Toffoli gate, facilitating practical applications in quantum information and computation.Comment: 10 pages, 2 figure

    NonClassicality Criteria in Multiport Interferometry

    Get PDF
    Interference lies at the heart of the behavior of classical and quantum light. It is thus crucial to understand the boundaries between which interference patterns can be explained by a classical electromagnetic description of light and which, on the other hand, can only be understood with a proper quantum mechanical approach. While the case of two-mode interference has received a lot of attention, the multimode case has not yet been fully explored. Here we study a general scenario of intensity interferometry: we derive a bound on the average correlations between pairs of output intensities for the classical wavelike model of light, and we show how it can be violated in a quantum framework. As a consequence, this violation acts as a nonclassicality witness, able to detect the presence of sources with sub-Poissonian photon-number statistics. We also develop a criterion that can certify the impossibility of dividing a given interferometer into two independent subblocks.Comment: 5 + 3 pages, published versio
    corecore