114 research outputs found

    Lithium-ion drifting: Application to the study of point defects in floating-zone silicon

    Get PDF
    The use of lithium-ion (Li(+)) drifting to study the properties of point defects in p-type Floating-Zone (FZ) silicon crystals is reported. The Li(+) drift technique is used to detect the presence of vacancy-related defects (D defects) in certain p-type FZ silicon crystals. SUPREM-IV modeling suggests that the silicon point defect diffusivities are considerably higher than those commonly accepted, but are in reasonable agreement with values recently proposed. These results demonstrate the utility of Li(+) drifting in the study of silicon point defect properties in p-type FZ crystals. Finally, a straightforward measurement of the Li(+) compensation depth is shown to yield estimates of the vacancy-related defect concentration in p-type FZ crystals

    Nuclear Translocation of β-Catenin during Mesenchymal Stem Cells Differentiation into Hepatocytes Is Associated with a Tumoral Phenotype

    Get PDF
    Wnt/β-catenin pathway controls biochemical processes related to cell differentiation. In committed cells the alteration of this pathway has been associated with tumors as hepatocellular carcinoma or hepatoblastoma. The present study evaluated the role of Wnt/β-catenin activation during human mesenchymal stem cells differentiation into hepatocytes. The differentiation to hepatocytes was achieved by the addition of two different conditioned media. In one of them, β-catenin nuclear translocation, up-regulation of genes related to the Wnt/β-catenin pathway, such as Lrp5 and Fzd3, as well as the oncogenes c-myc and p53 were observed. While in the other protocol there was a Wnt/β-catenin inactivation. Hepatocytes with nuclear translocation of β-catenin also had abnormal cellular proliferation, and expressed membrane proteins involved in hepatocellular carcinoma, metastatic behavior and cancer stem cells. Further, these cells had also increased auto-renewal capability as shown in spheroids formation assay. Comparison of both differentiation protocols by 2D-DIGE proteomic analysis revealed differential expression of 11 proteins with altered expression in hepatocellular carcinoma. Cathepsin B and D, adenine phosphoribosyltransferase, triosephosphate isomerase, inorganic pyrophosphatase, peptidyl-prolyl cis-trans isomerase A or lactate dehydrogenase β-chain were up-regulated only with the protocol associated with Wnt signaling activation while other proteins involved in tumor suppression, such as transgelin or tropomyosin β-chain were down-regulated in this protocol. In conclusion, our results suggest that activation of the Wnt/β-catenin pathway during human mesenchymal stem cells differentiation into hepatocytes is associated with a tumoral phenotype

    Deletion of Wntless in myeloid cells exacerbates liver fibrosis and the ductular reaction in chronic liver injury

    Get PDF
    Background: Macrophages play critical roles in liver regeneration, fibrosis development and resolution. They are among the first responders to liver injury and are implicated in orchestrating the fibrogenic response via multiple mechanisms. Macrophages are also intimately associated with the activated hepatic progenitor cell (HPC) niche or ductular reaction that develops in parallel with fibrosis. Among the many macrophage-derived mediators implicated in liver disease progression, a key role for macrophage-derived Wnt proteins in driving pro-regenerative HPC activation towards a hepatocellular fate has been suggested. Wnt proteins, in general, however, have been associated with both pro-and anti-fibrogenic activities in the liver and other organs. We investigated the role of macrophage-derived Wnt proteins in fibrogenesis and HPC activation in murine models of chronic liver disease by conditionally deleting Wntless expression, which encodes a chaperone essential for Wnt protein secretion, in LysM-Cre-expressing myeloid cells (LysM-Wls mice)

    In situ neutron diffraction study of lattice deformation during oxygen precipitation in silicon

    No full text
    We present the first in situ measurement of the evolution of strain fields due to oxygen precipitation in silicon single crystals by means of high‐resolution neutron backscattering. The integrated reflecting power R and the lattice parameter variations Δd/d which are directly related to the strain fields have been measured as a function of temperature and annealing time. In the temperature range from 300 to 1185 K, high purity float zone crystals maintain the R‐values characteristic for perfect crystals. In contrast, Czochralski‐grown crystals which contain on the order of 1018^{18} oxygen atoms cm3^{−3} (20 ppm), show a steep increase in reflectivity starting at 1160 K, and which goes through a maximum at 1350 K. At 1456 K, partial annealing occurs with a time constant of several hours

    Orientation of oxygen precipitates in silicon

    No full text
    Czochralskii-grown dislocation-free silicon is used almost exclusively in the semiconductor industry for the manufacture of VLSI devices. Such material contains small quantities ( approximately 10 p.p.m.) of dissolved oxygen, which can have a crucial effect on the devices produced. During heat treatments the oxygen precipitates out as silica particles. This communication addresses the orientation of these cuboidal precipitates and establishes that they lie only on the (100) planes, with edges along the (110) directions
    corecore