201 research outputs found

    A retrospective analysis of the diagnostic performance of 11C-choline PET/CT for detection of hyperfunctioning parathyroid glands after prior negative or discordant imaging in primary hyperparathyroidism

    Get PDF
    BACKGROUND: Identifying the correct location of a parathyroid adenoma in patients with primary hyperparathyroidism (pHPT) is crucial as it can guide surgical treatment. This study aimed to determine the diagnostic performance of 11C-choline PET/CT in patients with pHPT as a next in-line scan after primary negative or discordant first-line imaging. METHODS: This was a retrospective single-center cohort study. All patients with pHPT that were scanned utilizing 11C-choline PET/CT, after prior negative or discordant imaging, between 2015 and 2019 and who subsequently underwent parathyroid surgery were included. The results of the 11C-choline PET/CT were evaluated lesion-based, with surgical exploration and histopathological examination as the gold standard. RESULTS: In total, 36 patients were included of which three patients were known to have Multiple Endocrine Neoplasia (MEN) syndrome. In these 36 patients, 40 lesions were identified on 11C-choline PET/CT and 37 parathyroid lesions were surgically removed. In 34/36 (94%) patients a focused parathyroidectomy was performed, in one patient a cervical exploration due to an ectopically identified adenoma, and in one patient a bilateral exploration was performed because of a double adenoma. Overall, per-lesion sensitivity of 11C-choline PET/CT was 97%, the positive predictive value was 95% and the accuracy was 94% for all parathyroid lesions. CONCLUSIONS: In patients with pHPT and prior negative or discordant first-line imaging results, pathological parathyroid glands can be localized by 11C-choline PET/CT with high sensitivity and accuracy

    The Value of Pre-Ablative I-131 Scan for Clinical Management in Patients With Differentiated Thyroid Carcinoma

    Get PDF
    BACKGROUND: A diagnostic I-131 (Dx) scan is used to detect a thyroid remnant or metastases before treatment of differentiated thyroid cancer (DTC) with I-131. The aim of this study is to specify in which patients with DTC a Dx scan could have an additional value, by studying the effect of the Dx scan on clinical management. METHODS: Patients with DTC, treated with I-131 after thyroidectomy were included in this retrospective cohort study. Twenty-four hours after administration of 37 MBq I-131 a whole body Dx scan and an uptake measurement at the original thyroid bed were performed. Outcomes of the Dx scan and the subsequent changes in clinical management, defined as additional surgery or adjustment of I-131 activity, were reported. Risk factors for a change in clinical management were identified with a binary logistic regression. RESULTS: In 11 (4.2%) patients clinical management was changed, including additional surgery (n=5), lowering I-131 activity (n=5) or both (n=1). Risk factors for a change in clinical management were previous neck surgery (OR 5.9, 95% CI: 1.4-24.5), surgery in a non-tertiary center (OR 13.4, 95% CI: 2.8 – 63.8), TSH <53.4 mU/L (OR 19.64, 95% CI: 4.94-78.13), thyroglobulin ≥50.0 ng/L (OR 7.4, 95% CI: 1.6-34.9) and free T4 ≥4.75 pmol/L (OR 156.8, 95% CI: 128.4-864.2) CONCLUSION: The Dx scan can potentially change clinical management before treatment with I-131, but the yield is low. A Dx-scan should only be considered for patients with a high pre-scan risk of a change in management, based on patient history and prior center-based surgical outcomes

    Virtual reality cognitive-behavioural therapy versus cognitive-behavioural therapy for paranoid delusions:a study protocol for a single-blind multi-Centre randomised controlled superiority trial

    Get PDF
    Abstract Background Seventy per cent of patients with psychotic disorders has paranoid delusions. Paranoid delusions are associated with significant distress, hospital admission and social isolation. Cognitive-behavioural therapy for psychosis (CBTp) is the primary psychological treatment, but the median effect size is only small to medium. Virtual reality (VR) has a great potential to improve the effectiveness of CBTp. In a previous study, we found that VR based CBT (VRcbt) for paranoid delusions is superior to waiting list. As a next step, a direct comparison with CBTp is needed. The present study aims to investigate whether VRcbt is more effective and cost-effective than regular CBTp in treating paranoid delusions and improving daily life social functioning of patients with psychotic disorders. Methods A total of 106 patients with DSM-5 diagnosis of psychotic disorder and at least moderate level of paranoid ideations will be recruited for this multicentre randomized controlled trial (RCT). Patients will be randomized to either VRcbt or standard CBTp for paranoid delusions. VRcbt consists of maximum 16 sessions in virtual social situations that trigger paranoid ideations and distress, delivered in an 8–12 week time frame. Standard CBTp also consists of maximum 16 sessions including exposure and behavioural experiments, delivered in an 8–12 week time frame. The two groups will be compared at baseline, post-treatment and six months follow-up. Primary outcome is the level of paranoid ideations in daily life social situations, measured with ecological momentary assessments (EMA) at semi-random moments ten times a day during seven days, before and after treatment. Every session, participants and therapists will rate the level of paranoid ideation and global clinical impression. Discussion Comparison of VRcbt and CBTp will provide information about the relative (cost-) effectiveness of VRcbt for this population. VRcbt may become a preferred psychological treatment for paranoid delusions and social anxiety in patients with psychotic disorder. Trial registration Netherlands Trial Register, NL7758. Registered on 23 May 2019

    Diagnosing pancreatic neuroendocrine tumors in patients with multiple endocrine neoplasia type 1 in daily practice

    Get PDF
    Background: In multiple endocrine neoplasia type 1 (MEN1), pancreatic neuroendocrine tumors (PanNETs) have a high prevalence and represent the main cause of death. This study aimed to assess the diagnostic accuracy of the currently used conventional pancreatic imaging techniques and the added value of fine needle aspirations (FNAs). Methods: Patients who had at least one imaging study were included from the population-based MEN1 database of the DutchMEN Study Group from 1990 to 2017. Magnetic resonance imaging (MRI), computed tomography (CT), endoscopic ultrasonography (EUS), FNA, and surgical resection specimens were obtained. The first MRI, CT, or EUS was considered as the index test. For a comparison of the diagnostic accuracy of MRI versus CT, patients with their index test taken between 2010 and 2017 were included. The reference standard consisted of surgical histopathology or radiological follow-up. ResultsA total of 413 patients (92.8% of the database) underwent 3,477 imaging studies. The number of imaging studies per patient increased, and a preference for MRI was observed in the last decade. Overall diagnostic accuracy was good with a positive (PPV) and negative predictive value (NPV) of 88.9% (95% confidence interval, 76.0-95.6) and 92.8% (89.4-95.1), respectively, for PanNET in the pancreatic head and 92.0% (85.3-96.0) and 85.3% (80.5-89.1), respectively, in the body/tail. For MRI, PPV and NPV for pancreatic head tumors were 100% (76.1-100) and 87.1% (76.3-93.6) and for CT, 60.0% (22.9-88.4) and 70.4% (51.3-84.3), respectively. For body/tail tumors, PPV and NPV were 91.3% (72.0-98.8) and 87.0% (75.3-93.9), respectively, for MRI and 100% (74.9-100) and 77.8% (54.3-91.5), respectively, for CT. Pathology confirmed a PanNET in 106 out of 110 (96.4%) resection specimens. FNA was performed on 34 lesions in 33 patients and was considered PanNET in 24 [all confirmed PanNET by histology (10) or follow-up (14)], normal/cyst/unrepresentative in 6 (all confirmed PanNET by follow-up), and adenocarcinoma in 4 (2 confirmed and 2 PanNET). Three patients, all older than 60 years, had a final diagnosis of pancreatic adenocarcinoma. Conclusion: As the accuracy for diagnosing MEN1-related PanNET of MRI was higher than that of CT, MRI should be the preferred (non-invasive) imaging modality for PanNET screening/surveillance. The high diagnostic accuracy of pancreatic imaging and the sporadic occurrence of pancreatic adenocarcinoma question the need for routine (EUS-guided) FNA

    Initiating pancreatic neuroendocrine tumour (pNET) screening in young MEN1 patients:results from the DutchMEN Study Group

    Get PDF
    Context: Nonfunctioning pancreatic neuroendocrine tumors (NF-pNETs) are highly prevalent and constitute an important cause of mortality in patients with multiple endocrine neoplasia type 1 (MEN1). Still, the optimal age to initiate screening for pNETs is under debate. Objective: The aim of this work is to assess the age of occurrence of clinically relevant NF-pNETs in young MEN1 patients. Methods: Pancreatic imaging data of MEN1 patients were retrieved from the DutchMEN Study Group database. Interval-censored survival methods were used to describe age-related penetrance, compare survival curves, and develop a parametric model for estimating the risk of having clinically relevant NF-pNET at various ages. The primary objective was to assess age at occurrence of clinically relevant NF-pNET (size ≥†20 mm or rapid growth); secondary objectives were the age at occurrence of NF-pNET of any size and pNET-associated metastasized disease. Results: Five of 350 patients developed clinically relevant NF-pNETs before age 18 years, 2 of whom subsequently developed lymph node metastases. No differences in clinically relevant NF-pNET-free survival were found for sex, time frame, and type of MEN1 diagnosis or genotype. The estimated ages (median, 95% CI) at a 1%, 2.5%, and 5% risk of having developed a clinically relevant tumor are 9.5 (6.5-12.7), 13.5 (10.2-16.9), and 17.8 years (14.3-21.4), respectively. Conclusion: Analyses from this population-based cohort indicate that start of surveillance for NF-pNETs with pancreatic imaging at age 13 to 14 years is justified. The psychological and medical burden of screening at a young age should be considered

    Axonal response of mitochondria to demyelination and complex IV activity within demyelinated axons in experimental models of multiple sclerosis

    Get PDF
    AIMS: Axonal injury in multiple sclerosis (MS) and experimental models is most frequently detected in acutely demyelinating lesions. We recently reported a compensatory neuronal response, where mitochondria move to the acutely demyelinated axon and increase the mitochondrial content following lysolecithin-induced demyelination. We termed this homeostatic phenomenon, which is also evident in MS, the axonal response of mitochondria to demyelination (ARMD). The aim of this study is to determine whether ARMD is consistently evident in experimental demyelination and how its perturbation relates to axonal injury.METHODS: In the present study, we assessed axonal mitochondrial content as well as axonal mitochondrial respiratory chain complex IV activity (cytochrome c oxidase or COX) of axons and related these to axonal injury in nine different experimental disease models. We used immunofluorescent histochemistry as well as sequential COX histochemistry followed by immunofluorescent labelling of mitochondria and axons.RESULTS: We found ARMD a consistent and robust phenomenon in all experimental disease models. The increase in mitochondrial content within demyelinated axons, however, was not always accompanied by a proportionate increase in complex IV activity, particularly in highly inflammatory models such as experimental autoimmune encephalomyelitis (EAE). Axonal complex IV activity inversely correlated with the extent of axonal injury in experimental disease models.CONCLUSIONS: Our findings indicate that ARMD is a consistent and prominent feature and emphasise the importance of complex IV activity in the context of ARMD, especially in autoimmune inflammatory demyelination, paving the way for the development of novel neuroprotective therapies.</p

    Evolution of the mesenteric mass in small intestinal neuroendocrine tumours

    Get PDF
    Around two-thirds of patients with small intestinal neuroendocrine tumours are present with a metastatic mesenteric mass. This mass is known to cause intestinal complications, however, little is known on its development over time in the era of targeted therapy. Therefore, we conducted a retrospective study to assess the growth and response to therapy. We found that the growth of the mesenteric mass was detectable in 13.5% over a median time of 3.4 years and peptide receptor radionuclide therapy resulted in size reduction in only 3.8%. This site-specific static growth behavior is important to note when assessing disease progression and therapeutic options. Background: A metastatic mesenteric mass is a hallmark of small intestinal neuroendocrine tumours (SI-NETs). However, little is known on its development over time. Therefore, we conducted a study to assess the evolution of a SI-NET-associated mesenteric mass over time. Methods: Retrospectively, 530 patients with proven SI-NET were included. The presence and growth of a mesenteric mass was assessed using RECIST 1.1 criteria on every consecutive CT-scan until the end of follow-up or resection. Results: At baseline, a mesenteric mass was present in 64% of the patients, of whom 13.5% showed growth of the mesenteric mass with a median time to growth of 40 months. Male gender was the only independent predictor of growth (OR 2.67). Of the patients without a mesenteric mass at the first evaluation, 2.6% developed a pathological mesenteric mass. Treatment with peptide receptor radionuclide therapy (PRRT; N = 132) resulted in an objective size reduction of the mesenteric mass in 3.8%. Conclusion: The metastatic mesenteric mass in SI-NETs has a static behavior over time. Therefore, site-specific growth behavior should be taken into account when selecting target lesions and assessing disease progression and therapeutic response. PRRT appears not to be effective for size reduction of the mesenteric mass

    Enhanced axonal response of mitochondria to demyelination offers neuroprotection:implications for multiple sclerosis

    Get PDF
    Axonal loss is the key pathological substrate of neurological disability in demyelinating disorders, including multiple sclerosis (MS). However, the consequences of demyelination on neuronal and axonal biology are poorly understood. The abundance of mitochondria in demyelinated axons in MS raises the possibility that increased mitochondrial content serves as a compensatory response to demyelination. Here, we show that upon demyelination mitochondria move from the neuronal cell body to the demyelinated axon, increasing axonal mitochondrial content, which we term the axonal response of mitochondria to demyelination (ARMD). However, following demyelination axons degenerate before the homeostatic ARMD reaches its peak. Enhancement of ARMD, by targeting mitochondrial biogenesis and mitochondrial transport from the cell body to axon, protects acutely demyelinated axons from degeneration. To determine the relevance of ARMD to disease state, we examined MS autopsy tissue and found a positive correlation between mitochondrial content in demyelinated dorsal column axons and cytochromecoxidase (complex IV) deficiency in dorsal root ganglia (DRG) neuronal cell bodies. We experimentally demyelinated DRG neuron-specific complex IV deficient mice, as established disease models do not recapitulate complex IV deficiency in neurons,and found that these mice are able to demonstrate ARMD, despite the mitochondrial perturbation.Enhancement of mitochondrial dynamics in complex IV deficient neurons protects the axon upon demyelination. Consequently, increased mobilisation of mitochondria from the neuronal cell body to the axon is a novel neuroprotective strategy for the vulnerable, acutely demyelinated axon. We propose that promoting ARMD is likely to be a crucial preceding step for implementing potential regenerative strategies for demyelinating disorders.</p

    Enhanced axonal response of mitochondria to demyelination offers neuroprotection:implications for multiple sclerosis

    Get PDF
    Axonal loss is the key pathological substrate of neurological disability in demyelinating disorders, including multiple sclerosis (MS). However, the consequences of demyelination on neuronal and axonal biology are poorly understood. The abundance of mitochondria in demyelinated axons in MS raises the possibility that increased mitochondrial content serves as a compensatory response to demyelination. Here, we show that upon demyelination mitochondria move from the neuronal cell body to the demyelinated axon, increasing axonal mitochondrial content, which we term the axonal response of mitochondria to demyelination (ARMD). However, following demyelination axons degenerate before the homeostatic ARMD reaches its peak. Enhancement of ARMD, by targeting mitochondrial biogenesis and mitochondrial transport from the cell body to axon, protects acutely demyelinated axons from degeneration. To determine the relevance of ARMD to disease state, we examined MS autopsy tissue and found a positive correlation between mitochondrial content in demyelinated dorsal column axons and cytochrome c oxidase (complex IV) deficiency in dorsal root ganglia (DRG) neuronal cell bodies. We experimentally demyelinated DRG neuron-specific complex IV deficient mice, as established disease models do not recapitulate complex IV deficiency in neurons, and found that these mice are able to demonstrate ARMD, despite the mitochondrial perturbation. Enhancement of mitochondrial dynamics in complex IV deficient neurons protects the axon upon demyelination. Consequently, increased mobilisation of mitochondria from the neuronal cell body to the axon is a novel neuroprotective strategy for the vulnerable, acutely demyelinated axon. We propose that promoting ARMD is likely to be a crucial preceding step for implementing potential regenerative strategies for demyelinating disorders.</p
    • …
    corecore