876 research outputs found

    Phase-space density in heavy-ion collisions revisited

    Full text link
    We derive the phase space density of bosons from a general boson interferometry formula. We find that the phase space density is connected with the two-particles and the single particle density distribution functions. If the boson density is large, the two particles density distribution function can not be expressed as a product of two single particle density distributions. However, if the boson density is so small that two particles density distribution function can be expressed as a product of two single particle density distributions, then Bertsch's formula is recovered. For a Gaussian model, the effects of multi-particles Bose-Einstein correlations on the mean phase space density are studied.Comment: 18 Pages, Four eps files, EPJC in Pres

    On kinematics and dynamics of independent pion emission

    Get PDF
    Multiparticle boson states, proposed recently for 'independently' emitted pions in heavy ion collisions, are reconsidered in standard second quantized formalism and shown to emerge from a simplistic chaotic current dynamics. Compact equations relate the density operator, the generating functional of multiparticle counts, and the correlator of the external current to each other. 'Bose-Einstein-condensation' is related to the external pulse. A quantum master equation is advocated for future Monte-Carlo simulations.Comment: 10 pages LaTeX, Sec.7 adde

    Bose-Einstein Correlations of Pion Wavepackets

    Get PDF
    A wavepacket model for a system of free pions, which takes into account the full permutation symmetry of the wavefunction and which is suitable for any phase space parametrization is developed. The properties of the resulting mixed ensembles and the two-particle correlation function are discussed. A physical interpretation of the chaoticity lambda as localizat of the pions in the source is presented. Two techniques to generate test-particles, which satisfy the probability densities of the wavepacket state, are studied: 1. A Monte Carlo procedure in momentum space based on the standard Metropolis technique. 2. A molecular dynamic procedure using Bohm's quantum theory of motion. In order to reduce the numerical complexity, the separation of the wavefunction into momentum space clusters is discussed. In this context th influence of an unauthorized factorization of the state, i. e. the omissio of interference terms, is investigated. It is shown that the correlation radius remains almost uneffected, but the chaoticity parameter decreases substantially. A similar effect is observed in systems with high multiplic where the omission of higher order corrections in the analysis of two-part correlations causes a reduction of the chaoticity and the radius. The approximative treatment of the Coulomb interaction between pions and source is investigated. The results suggest that Coulomb effects on the co radii are not symmetric for pion pairs of different charges. For negative the radius, integrated over the whole momentum spectrum, increases substan while for positive pions the radius remains almost unchanged.Comment: 15 pages, 8 figures, 0.8 Mb, uses ljour2-macro, Submitted to Z. Phys. A (1997

    Hbt Analysis of Anisotropic Transverse Flow

    Get PDF
    The effects of anisotropic transverse collective flow on the HBT correlation function is studied. There exist three different physics contributions related to flow which affect the correlation function: anisotropic source shape, anisotropic space-momentum correlations in pion emission, and the effects related to the HBT measurement of the size of a moving source in different reference frames. Resolution of these contributions experimentally can lead to a detailed understanding of both collective flow in nucleus-nucleus collisions and the HBT technique itself. A method is presented which permits the derivation of model independent relations between the radius of a source measured in a frame in which it is moving and in its rest frame.Comment: latex, 16 pages, 1 figur

    Evidence for chemical equilibration at RHIC

    Get PDF
    This contribution focuses on the results of statistical model calculations at RHIC energies, including recently available experimental data. Previous calculations of particle yield ratios showed good agreement with measurements at SPS and lower energies, suggesting that the composite system possesses a high degree of chemical equilibrium at freeze-out. The effect of feeddown contamination on the model parameters is discussed, and the sensitivity of individual ratios to the model parameters (TT, μB\mu_B) is illustrated.Comment: Talk presented at Strange Quarks in Matter 2001, Frankfurt, September 24-29, 2001. Proceedings to be published by J. Phys. G. 8 pages with 4 figure

    Multi-boson effects and the normalization of the two-pion correlation function

    Get PDF
    The two-pion correlation function can be defined as a ratio of either the measured momentum distributions or the normalized momentum space probabilities. We show that the first alternative avoids certain ambiguities since then the normalization of the two-pion correlator contains important information on the multiplicity distribution of the event ensemble which is lost in the second alternative. We illustrate this explicitly for specific classes of event ensembles.Comment: 6 pages, three figures,submit to PR

    Hanbury-Brown--Twiss Analysis in a Solvable Model

    Full text link
    The analysis of meson correlations by Hanbury-Brown--Twiss interferometry is tested with a simple model of meson production by resonance decay. We derive conditions which should be satisfied in order to relate the measured momentum correlation to the classical source size. The Bose correlation effects are apparent in both the ratio of meson pairs to singles and in the ratio of like to unlike pairs. With our parameter values, we find that the single particle distribution is too distorted by the correlation to allow a straightforward analysis using pair correlation normalized by the singles rates. An analysis comparing symmetrized to unsymmetrized pairs is more robust, but nonclassical off-shell effects are important at realistic temperatures.Comment: 21 pages + 9 figures (tarred etc. using uufiles, submitted separately), REVTeX 3.0, preprint number: DOE/ER/40561-112/INT93-00-3

    Bioactivity of volatile organic compounds by Aureobasidium species against gray mold of tomato and table grape

    Get PDF
    Aureobasidium strains isolated from diverse unconventional environments belonging to the species A. pullulans, A. melanogenum, and A. subglaciale were evaluated for Volatile Organic Compounds (VOCs) production as a part of their modes of action against Botrytis cinerea of tomato and table grape. By in vitro assay, VOCs generated by the antagonists belonging to the species A. subglaciale showed the highest inhibition percentage of the pathogen mycelial growth (65.4%). In vivo tests were conducted with tomatoes and grapes artificially inoculated with B. cinerea conidial suspension, and exposed to VOCs emitted by the most efficient antagonists of each species (AP1, AM10, AS14) showing that VOCs of AP1 (A. pullulans) reduced the incidence by 67%, partially confirmed by the in vitro results. Conversely, on table grape, VOCs produced by all the strains did not control the fungal incidence but were only reducing the infection severity (< 44.4% by A. pullulans; < 30.5% by A. melanogenum, and A. subglaciale). Solid-phase microextraction (SPME) and subsequent gas chromatography coupled to mass spectrometry identified ethanol, 3-methyl-1-butanol, 2-methyl-1-propanol as the most produced VOCs. However, there were differences in the amounts of produced VOCs as well as in their repertoire. The EC50 values of VOCs for reduction of mycelial growth of B. cinerea uncovered 3-methyl-1-butanol as the most effective compound. The study demonstrated that the production and the efficacy of VOCs by Aureobasidium could be directly related to the specific species and pathosystem and uncovers new possibilities for searching more efficient VOCs producing strains in unconventional habitats other than plant

    Analytic Solution of the Pion-Laser Model

    Get PDF
    Brooding over bosons, wave packets and Bose - Einstein correlations, we find that a generalization of the pion-laser model for the case of overlapping wave-packets is analytically solvable with complete n-particle symmetrization. The effective radius parameter of the two-particle correlation function is reduced for low values and enlargened for high values of the mean momentum in the rare gas limiting case, as compared to the case when multi-particle symmetrization effects are neglected. These results explicitly depend on the multiplicity, providing a theoretical basis for event-by-event analysis of high energy heavy ion reactions.Comment: LaTeX, ReVTeX 3.1, 7 pages, uses 1 eps figure and epsfig.sty (shortened version
    corecore