618 research outputs found
On the Design and Test of a Liquid Injection Electric Thruster
A liquid injection electric thruster (LINJET) was designed and tested. The results of the tests were very encouraging with thruster performance levels well in excess of design goals. Supporting activities to the engine design and test included a five-million pulse life test on the main capacitor, a 46-million pulse test on the trigger electronics, design and fabrication of a zero resistance torque connector for use with the torsional pendulum thrust stand, design and fabrication of a logic box for control of engine firing, and a physical and chemical properties characterization of the perfluorocarbon propellant. While the results were encouraging, testing was limited, as many problems existed with the design. The most significant problem was involved with excessive propellant flow which contributed to false triggering and shorting. Low power active thermal control of the propellant storage cavity, coupled with a re-evaluation of the injection ring pore size and area exposed to the main capacitor discharge are areas that should be investigated should this design be carried forward
VLBI observations of the Crab nebula pulsar
Observations were made at meter wave-lengths using very long base-line interferometry techniques. At 196.5 MHz no resolution of the pulsar are observed; all the pulse shapes observed with the interferometers are similar to single dish profiles, and all the power pulsates. At 111.5 MHz besides the pulsing power there is always a steady component, presumably due to interstellar scattering. The pulsar is slightly resolved at 111.5 MHz with an apparent angular diameter of 0.07 sec ? 0.01 sec. A 50 percent linear polarization of the time-averaged power is noted at 196.5 MHz; at 111.5 MHz, 20 percent of the total time-averaged power is polarized, 35 percent of the pulsing power is polarized, and the steady component is unpolarized
Laser Applications
Contains research objectives and reports on five research projects.U. S. Air Force - Office of Scientific Research(Contract F44620-71-C-0051)Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DAAB07-71-C-0300Naval Air Systems Comman
Laser Applications
Contains research objectives and reports on three research projects.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DAAB07-71-C-0300U. S. Air Force Office of Scientific Research (Contract F44620-71-C-0051)Naval Air Systems Comman
Rate of tarsal and metatarsal bone mineral density change in adults with diabetes mellitus and peripheral neuropathy: A longitudinal study
BACKGROUND: In people with diabetes (DM) and peripheral neuropathy (PN), loss of bone mineral density (BMD) in the tarsals and metatarsals contribute to foot complications; however, changes in BMD of the calcaneal bone is most commonly reported. This study reports rate of change in BMD of all the individual bones in the foot, in participants with DM and PN. Our aim was to investigate whether the rate of BMD change is similar across all the bones of the foot.
METHODS: Participants with DM and PN (n = 60) were included in this longitudinal cohort study. Rate of BMD change of individual bones was monitored using computed tomography at baseline and 6 months, 18 months, and 3-4 years from baseline. Personal factors (age, sex, medication use, step count, sedentary time, and PN severity) were assessed. A random coefficient model estimated rate of change of BMD in all bones and Pearson correlation tested relationships between personal factor variables and rate of BMD change.
RESULTS: Mean and calcaneal BMD decreased over the study period (p \u3c 0.05). Individual tarsal and metatarsal bones present a range of rate of BMD change (-0.3 to -0.9%/year) but were not significantly different than calcaneal BMD change. Only age showed significant correlation with BMD and rate of BMD change.
CONCLUSION: The rate of BMD change did not significantly differ across different foot bones at the group level in people with DM and PN without foot deformity. Asymmetric BMD loss between individual bones of the foot and aging may be indicators of pathologic changes and require further investigation.
TRIAL REGISTRATION: Metatarsal Phalangeal Joint Deformity Progression-R01. Registered 25 November 2015, https://clinicaltrials.gov/ct2/show/NCT02616263
Separate F-Type Plasmids Have Shaped the Evolution of the H30 Subclone of Escherichia coli Sequence Type 131.
The extraintestinal pathogenic Escherichia coli (ExPEC) H30 subclone of sequence type 131 (ST131-H30) has emerged abruptly as a dominant lineage of ExPEC responsible for human disease. The ST131-H30 lineage has been well described phylogenetically, yet its plasmid complement is not fully understood. Here, single-molecule, real-time sequencing was used to generate the complete plasmid sequences of ST131-H30 isolates and those belonging to other ST131 clades. Comparative analyses revealed separate F-type plasmids that have shaped the evolution of the main fluoroquinolone-resistant ST131-H30 clades. Specifically, an F1:A2:B20 plasmid is strongly associated with the H30R/C1 clade, whereas an F2:A1:B− plasmid is associated with the H30Rx/C2 clade. A series of plasmid gene losses, gains, and rearrangements involving IS26 likely led to the current plasmid complements within each ST131-H30 sublineage, which contain several overlapping gene clusters with putative functions in virulence and fitness, suggesting plasmid-mediated convergent evolution. Evidence suggests that the H30Rx/C2-associated F2:A1:B− plasmid type was present in strains ancestral to the acquisition of fluoroquinolone resistance and prior to the introduction of a multidrug resistance-encoding gene cassette harboring blaCTX-M-15. In vitro experiments indicated a host strain-independent low frequency of plasmid transfer, differential levels of plasmid stability even between closely related ST131-H30 strains, and possible epistasis for carriage of these plasmids within the H30R/Rx lineages. IMPORTANCE A clonal lineage of Escherichia coli known as ST131 has emerged as a dominating strain type causing extraintestinal infections in humans. The evolutionary history of ST131 E. coli is now well understood. However, the role of plasmids in ST131’s evolutionary history is poorly defined. This study utilized real-time, single-molecule sequencing to compare plasmids from various current and historical lineages of ST131. From this work, it was determined that a series of plasmid gains, losses, and recombinational events has led to the currently circulating plasmids of ST131 strains. These plasmids appear to have evolved to acquire similar gene clusters on multiple occasions, suggesting possible plasmid-mediated convergent evolution leading to evolutionary success. These plasmids also appear to be better suited to exist in specific strains of ST131 due to coadaptive mutations. Overall, a series of events has enabled the evolution of ST131 plasmids, possibly contributing to the lineage’s success
Abnormal cognition, sleep, EEG and brain metabolism in a novel knock-in Alzheimer mouse, PLB1
Peer reviewedPublisher PD
Recommended from our members
The Tillamook County economy : a working model for evaluating economic change
Published March 1977. Facts and recommendations in this publication may no longer be valid. Please look for up-to-date information in the OSU Extension Catalog: http://extension.oregonstate.edu/catalo
A Parkinson's disease gene regulatory network identifies the signaling protein RGS2 as a modulator of LRRK2 activity and neuronal toxicity
Mutations in LRRK2 are one of the primary genetic causes of Parkinson's disease (PD). LRRK2 contains a kinase and a GTPase domain, and familial PD mutations affect both enzymatic activities. However, the signaling mechanisms regulating LRRK2 and the pathogenic effects of familial mutations remain unknown. Identifying the signaling proteins that regulate LRRK2 function and toxicity remains a critical goal for the development of effective therapeutic strategies. In this study, we apply systems biology tools to human PD brain and blood transcriptomes to reverse-engineer a LRRK2-centered gene regulatory network. This network identifies several putative master regulators of LRRK2 function. In particular, the signaling gene RGS2, which encodes for a GTPase-activating protein (GAP), is a key regulatory hub connecting the familial PD-associated genes DJ-1 and PINK1 with LRRK2 in the network. RGS2 expression levels are reduced in the striata of LRRK2 and sporadic PD patients. We identify RGS2 as a novel interacting partner of LRRK2 in vivo. RGS2 regulates both the GTPase and kinase activities of LRRK2. We show in mammalian neurons that RGS2 regulates LRRK2 function in the control of neuronal process length. RGS2 is also protective against neuronal toxicity of the most prevalent mutation in LRRK2, G2019S. We find that RGS2 regulates LRRK2 function and neuronal toxicity through its effects on kinase activity and independently of GTPase activity, which reveals a novel mode of action for GAP proteins. This work identifies RGS2 as a promising target for interfering with neurodegeneration due to LRRK2 mutations in PD patient
Interaction of tau with the RNA-Binding Protein TIA1 Regulates tau Pathophysiology and Toxicity
Dendritic mislocalization of microtubule associated protein tau is a hallmark of tauopathies, but the role of dendritic tau is unknown. We now report that tau interacts with the RNA-binding protein (RBP) TIA1 in brain tissue, and we present the brain-protein interactome network for TIA1. Analysis of the TIA1 interactome in brain tissue from wild-type (WT) and tau knockout mice demonstrates that tau is required for normal interactions of TIA1 with proteins linked to RNA metabolism, including ribosomal proteins and RBPs. Expression studies show that tau regulates the distribution of TIA1, and tau accelerates stress granule (SG) formation. Conversely, TIA1 knockdown or knockout inhibits tau misfolding and associated toxicity in cultured hippocampal neurons, while overexpressing TIA1 induces tau misfolding and stimulates neurodegeneration. Pharmacological interventions that prevent SG formation also inhibit tau pathophysiology. These studies suggest that the pathophysiology of tauopathy requires an intimate interaction with RNA-binding proteins
- …