4,083 research outputs found

    Scaling Analysis of Domain-Wall Free-Energy in the Edwards-Anderson Ising Spin Glass in a Magnetic Field

    Get PDF
    The stability of the spin-glass phase against a magnetic field is studied in the three and four dimensional Edwards-Anderson Ising spin glasses. Effective couplings and effective fields associated with length scale L are measured by a numerical domain-wall renormalization group method. The results obtained by scaling analysis of the data strongly indicate the existence of a crossover length beyond which the spin-glass order is destroyed by field H. The crossover length well obeys a power law of H which diverges as H goes to zero but remains finite for any non-zero H, implying that the spin-glass phase is absent even in an infinitesimal field. These results are well consistent with the droplet theory for short-range spin glasses.Comment: 4 pages, 5 figures; The text is slightly changed, the figures 3, 4 and 5 are changed, and a few references are adde

    Vortex jamming in superconductors and granular rheology

    Full text link
    We demonstrate that a highly frustrated anisotropic Josephson junction array(JJA) on a square lattice exhibits a zero-temperature jamming transition, which shares much in common with those in granular systems. Anisotropy of the Josephson couplings along the horizontal and vertical directions plays roles similar to normal load or density in granular systems. We studied numerically static and dynamic response of the system against shear, i. e. injection of external electric current at zero temperature. Current-voltage curves at various strength of the anisotropy exhibit universal scaling features around the jamming point much as do the flow curves in granular rheology, shear-stress vs shear-rate. It turns out that at zero temperature the jamming transition occurs right at the isotropic coupling and anisotropic JJA behaves as an exotic fragile vortex matter : it behaves as superconductor (vortex glass) into one direction while normal conductor (vortex liquid) into the other direction even at zero temperature. Furthermore we find a variant of the theoretical model for the anisotropic JJA quantitatively reproduces universal master flow-curves of the granular systems. Our results suggest an unexpected common paradigm stretching over seemingly unrelated fields - the rheology of soft materials and superconductivity.Comment: 10 pages, 5 figures. To appear in New Journal of Physic

    Why temperature chaos in spin glasses is hard to observe

    Full text link
    The overlap length of a three-dimensional Ising spin glass on a cubic lattice with Gaussian interactions has been estimated numerically by transfer matrix methods and within a Migdal-Kadanoff renormalization group scheme. We find that the overlap length is large, explaining why it has been difficult to observe spin glass chaos in numerical simulations and experiment.Comment: 4 pages, 6 figure

    Aging, rejuvenation, and memory effects in short-range Ising spin glass: Cu0.5_{0.5}Co0.5_{0.5}Cl2_{2}-FeCl3_{3} graphite bi-intercalation compound

    Full text link
    Non-equilibrium aging dynamics in 3D Ising spin glass Cu0.5_{0.5}Co0.5_{0.5}Cl2_{2}-FeCl3_{3} GBIC has been studied by zero-field cooled (ZFC) magnetization and low frequency AC magnetic susceptibility (f=0.05f = 0.05 Hz), where Tg=3.92±0.11T_{g} = 3.92 \pm 0.11 K. The time dependence of the relaxation rate S(t)=(1/H)S(t) = (1/H)dMZFC/M_{ZFC}/dlnt\ln t for the ZFC magnetization after the ZFC aging protocol, shows a peak at a characteristic time tcrt_{cr} near a wait time twt_{w} (aging behavior), corresponding to a crossover from quasi equilibrium dynamics to non-equilibrium. The time tcrt_{cr} strongly depends on twt_{w}, temperature (TT), magnetic field (HH), and the temperature shift (ΔT\Delta T). The rejuvenation effect is observed in both χ\chi^{\prime} and χ\chi^{\prime\prime} under the TT-shift and HH-shift procedures. The memory of the specific spin configurations imprinted during the ZFC aging protocol can be recalled when the system is re-heated at a constant heating rate. The aging, rejuvenation, and memory effects observed in the present system are discussed in terms of the scaling concepts derived from numerical studies on 3D Edwards-Anderson spin glass model.Comment: 14 pages, 14 figures; Eur. Phys. J. B accepted for publicatio

    Interference Commensurate Oscillations in Q1D Conductors

    Full text link
    We suggest an analytical theory to describe angular magnetic oscillations recently discovered in quasi-one-dimensional conductor (TMTSF)2PF6 [see Phys. Rev. B, 57, 7423 (1998)] and define the positions of the oscillation minima. The origin of these oscillations is related to interference effects resulting from an interplay of quasi-periodic and periodic ("commensurate") electron trajectories in an inclined magnetic field. We reproduce via calculations existing experimental data and predict some novel effects.Comment: 10 pages, 2 figure

    Symmetrical Temperature-Chaos Effect with Positive and Negative Temperature Shifts in a Spin Glass

    Full text link
    The aging in a Heisenberg-like spin glass Ag(11 at% Mn) is investigated by measurements of the zero field cooled magnetic relaxation at a constant temperature after small temperature shifts ΔT/Tg<0.012|\Delta T/T_g| < 0.012. A crossover from fully accumulative to non-accumulative aging is observed, and by converting time scales to length scales using the logarithmic growth law of the droplet model, we find a quantitative evidence that positive and negative temperature shifts cause an equivalent restart of aging (rejuvenation) in terms of dynamical length scales. This result supports the existence of a unique overlap length between a pair of equilibrium states in the spin glass system.Comment: 4 page

    Extremely Large Magnetoresistance in the Nonmagnetic Metal PdCoO2

    Get PDF
    Extremely large magnetoresistance is realized in the nonmagnetic layered metal PdCoO2. In spite of a highly conducting metallic behavior with a simple quasi-two-dimensional hexagonal Fermi surface, the interlayer resistance reaches up to 35000% for the field along the [1-10] direction. Furthermore, the temperature dependence of the resistance becomes nonmetallic for this field direction, while it remains metallic for fields along the [110] direction. Such severe and anisotropic destruction of the interlayer coherence by a magnetic field on a simple Fermi surface is ascribable to orbital motion of carriers on the Fermi surface driven by the Lorentz force, but seems to have been largely overlooked until now.Comment: Phys. Rev. Lett. 111, 056601 (2013

    Dynamics of ghost domains in spin-glasses

    Full text link
    We revisit the problem of how spin-glasses ``heal'' after being exposed to tortuous perturbations by the temperature/bond chaos effects in temperature/bond cycling protocols. Revised scaling arguments suggest the amplitude of the order parameter within ghost domains recovers very slowly as compared with the rate it is reduced by the strong perturbations. The parallel evolution of the order parameter and the size of the ghost domains can be examined in simulations and experiments by measurements of a memory auto-correlation function which exhibits a ``memory peak'' at the time scale of the age imprinted in the ghost domains. These expectations are confirmed by Monte Calro simulations of an Edwards-Anderson Ising spin-glass model.Comment: 17 pages, 3 figure
    corecore