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The stability of the spin-glass phase against a magnetic field is studied in the three- and four-
dimensional Edwards-Anderson Ising spin glasses. Effective couplings Jeff and effective fields Heff

associated with length scale L are measured by a numerical domain-wall renormalization-group method.
The results obtained by scaling analysis of the data strongly indicate the existence of a crossover length
beyond which the spin-glass order is destroyed by field H. The crossover length well obeys a power law of
H which diverges as H ! 0 but remains finite for any nonzero H, implying that the spin-glass phase is
absent even in an infinitesimal field. These results are well consistent with the droplet theory for short-
range spin glasses.

DOI: 10.1103/PhysRevLett.99.137202 PACS numbers: 75.10.Nr, 05.10.Ln, 75.40.Mg

In spite of extensive studies for more than two decades, a
basic problem on the field-temperature phase diagram of
the short-range Ising spin glass (SG) is still controversial.
The mean-field theory predicts the existence of the SG
phase in a magnetic field up to a certain strength at a
temperature below Tc, the critical temperature in a zero
field [1]. On the other hand, the droplet theory [2–4], a
phenomenological theory for short-range SGs, predicts the
absence of the SG phase even in an infinitesimal field.

In experiments, this issue has been addressed by the
study of Ising SG FexMn1�xTiO3. Although the presence
of the SG phase in field was first reported [5], the subse-
quent work concluded its absence by careful analyses of its
relaxation time [6]. The same conclusion was recently
drawn by Jönsson et al. [7]. From a theoretical point of
view, numerical studies of the Edwards-Anderson (EA)
short-range SG model [8] have yielded rather conflicting
results: some data support the presence of the SG phase in
field [9,10], and others support its absence [11–13].
However, a recent numerical work on the correlation
length has shown the absence of the SG phase in three
dimensions at a low field H � 0:05J [13], where J is the
standard deviation of couplings fJijg. Since this field is
much below a critical field Hc � 0:65J suggested by a
previous study [10], the result strongly indicates the ab-
sence of the SG phase. However, there still remains the
possibility that the SG phase is stable at lower fields.
Furthermore, the physical mechanism which destroys the
SG state remains to be clarified.

In the present work, we study the EA SG in field in both
three and four dimensions by the numerical domain-wall
renormalization-group (DWRG) method [14–17]. We also
show some corresponding results of the Migdal-Kadanoff
(MK) SG model, in which the absence of the SG phase in
field has already been shown [15]. For this model we can

easily access huge sizes such as L � 1010. This compen-
sates the Monte Carlo (MC) results on the EA model within
a limited range of length scales. Quite interestingly, both
the models exhibit the same scaling behavior. All the
observables are scaled as a function of L=‘cr�H�, where
L is the system size and ‘cr�H� a crossover length beyond
which the SG order is destroyed by field H. The existence
of such a length scale is indeed predicted by the droplet
theory. The observed scaling behavior indicates the ab-
sence of the SG phase even in an infinitesimal field.

The droplet theory.—Droplets are spin clusters which
can be flipped with a low excitation energy [2–4]. The
typical excitation energy of droplets with length scale ‘ is
assumed to scale as ‘�, where � is the so-called stiffness
exponent. Now let us consider applying field H. Although
we consider a uniform field for simplicity, the following
argument is also valid for random fields. In Ising SGs, the
spins in a droplet are either �1 or �1 with equal proba-
bility, implying that the order of Zeeman energy of droplets
with size ‘ is H‘d=2. Since the droplet theory provides
some arguments which support the inequality d�1

2 � � [2],
the theory claims that there exists a characteristic length,
given as ‘cr�H� � H�1=� with � � d=2� �, that droplets
larger than ‘cr�H� are forced to flip by the field. As a result,
the SG state atH � 0 becomes unstable beyond ‘cr�H�. We
call ‘cr and � the (field) crossover length and the crossover
exponent, respectively. Furthermore the droplet theory
claims that the system is paramagnetic beyond ‘cr�H� as
it happens in random field Ising model. Because ‘cr�H�
diverges as H ! 0 but remains finite for any nonzero H,
the droplet theory asserts the absence of the SG phase in
any field.

DWRG method and observables.—Let us first explain
models for the DWRG method. Figure 1(a) shows the way
to construct the hierarchical lattice for the MK SG. The

PRL 99, 137202 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
28 SEPTEMBER 2007

0031-9007=07=99(13)=137202(4) 137202-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.99.137202


lattice is made iteratively by replacing each bond with bd�1

paths, where d is the dimension of the lattice. Each path
consists of b bonds, and new (b� 1) spins (full circles) are
inserted in between. We hereafter call the two outermost
spins (SL and SR) boundary spins. The size L of the lattice
is multiplied by b as the replacement is done once.
Figure 1(b) is the lattice for the EA SG. The lattice is the
same as that in Ref. [17]. It consists of two boundary spins
and Ld spins on a d-dimensional hyper-cubic lattice. The
boundary condition is open in the direction along which the
boundary spins lie, and is periodic in other directions. The
Hamiltonian is H � �

P
hijiJijSiSj �

P
iHiSi, where the

first term is exchange energies between two nearest neigh-
boring spins and the second term is Zeeman energies by
field Hi.

In the DWRG method, we measure the effective cou-
pling Jeff and the effective fields Heff defined by

 Z�SL; SR� � Tr0e�HfSg=T / e�H eff �SL;SR�=T; (1)

 H eff�SL; SR� � �JeffSLSR �H
�L�
eff SL �H

�R�
eff SR; (2)

where the trace in Eq. (1) is for all the spins except SL and
SR. In the MK SG, Z�SL; SR� is estimated exactly by taking
the trace sequentially from the later generated spins to the
earlier generated ones [15]. In the EA SG, on the other
hand, probability P�SL; SR� is measured by MC simula-
tions [17]. Since Jeff and the free-energy difference �F
caused by twisting the two boundary spins are related by
Jeff � ��F=2 in zero field, we consider that Jeff represents
the strength of the SG order. Because Jeff is either positive
or negative, we calculate the standard deviation of sample-
to-sample fluctuations of effective couplings, �J�L;H�.
We also measure that of effective fields �H�L;H�. The
correlation between effective couplings in zero field and
those in field H is also estimated by the correlation coef-
ficient

 C�L;H� �
Jeff�L;H�Jeff�L; 0�
�J�L;H��J�L; 0�

; (3)

where the overbar denotes the sample average. Here
Jeff�L;H� and Jeff�L; 0� are calculated for the same real-
ization of fJijg.

Results in the MK SG.—Figure 2 shows the size depen-
dences of �J and �H in the four-dimensional MK SG. The
values of couplings fJijg are taken from a Gaussian distri-
bution of mean 0 and width 1. We apply random fields Hi

of strength H by following the method from Ref. [15]. The
pool method [18] is used to access huge sizes such as L �
1010. The Zeeman energy (�H / HLd=2) overwhelms the
effective coupling (�J / L�) around L � H�1=� , i.e.,
around the crossover length ‘cr�H� in the droplet theory.
After the crossing, �J exhibits roughly exponential decay
and the exponent of �H changes from d=2 to �d� 1�=2.
These observations naturally lead us to the idea that
H�=��J, H�=��H and C are scaled as functions of X �
LH1=� which we call the scaling variable. The idea is tested
in Fig. 3. The data with different H and L nicely collapse
into scaling curves. These results clearly show the exis-
tence of the crossover length ‘cr�H�.

Results in the EA SG.—Let us first explain some details
of our simulation. The values of Jij are either �J or �J
with equal weights. Uniform field H is applied to all the
spins except SL and SR. The number of samples is more
than 1500 for all the sets of (L, H). We use the exchange
MC method [19] to accelerate the equilibration, and the
method in Ref. [16] to overcome a hard-relaxing problem
of the boundary spins which is originated from their high
connectivities. The temperature ranges used for the ex-
change MC are 0:5J 	 T 	 4:0J (Tc � 1:1J [20]) for d �
3 and 1:0J 	 T 	 4:5J (Tc � 2:0J [21]) for d � 4. We

H d/2

Lθ (θ    0.77)

L

H−θ/ζ

H−1/ζ

1 102 104 106 108 1010 1012

1015

1010

105

1

10-5

10-10

L

σ 
 ,

σ
J

H

σ  J
σH

d=4, T=0.2 (T    1.6)c

(ζ=d/2-θ)

, H=10-7

(A)

(B)

(C)

(D)

(E) (d-1)/2L

FIG. 2 (color online). Size dependences of �J and �H in the
four-dimensional MK SG at T � 0:125Tc, where Tc is the
critical temperature in zero field. Strength of random fields is
10�7. (a) Size dependence of �J for smaller L. (b) Size depen-
dence of �H for smaller L. (c) The size where the crossover
between �J and �H occurs. (d) The value of �J and �H at the
crossing point. (e) Size dependence of �H for larger L.
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FIG. 1. (a) The construction of the hierarchical lattice (b � 2, d � 3). (b) The lattice for the DWRG method in the EA SG.
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hereafter focus on the data at the lowest temperature which
is well below Tc. We set the MC step for thermalization
and that for measurement to be equal. They are sufficiently
(at least 5 times) larger than the ergodic time to ensure the
equilibration, where the ergodic time is the average MC
step for a specific replica to move from the lowest to the
highest temperature and return to the lowest one. As in
Ref. [16], we have also checked that MC runs starting from
parallel and antiparallel boundary spins yield identical
results within error bars.

Figures 4 and 5 show the results for d � 3 and those for
d � 4, respectively. Since C is a dimensionless quantity, it
is a function of only X � LH1=� . We therefore estimate �
by fitting the data of C. By assuming the scaling relation
� � d=2� � predicted by the droplet theory, � is esti-
mated to be 0.29(3) for d � 3 and 0.60(2) for d � 4.
Since they are close to both recent estimations by
Boettcher [22] [0.24(1) for d � 3 and 0.61(2) for d � 4]
and direct estimations by linear least-square fits of
ln
�J�L;H � 0�� against ln�L� (0.28(3) for d � 3 and
0.69(3) for d � 4), our data support the scaling relation.

We next examine scaling properties of �J and �H by
using the values of � determined above. The scaling rea-
sonably works except�J for d � 4. The deviation suggests
that the fields investigated are too large and/or the sizes are
too small so that corrections to the scaling is not negligible.
In fact, if we closely observe the scaling plot of �J for d �
3, we notice that the data with large H, say H � 0:48,
systematically deviate from the master curve, while the
data with small field are scaled quite well. If we estimate �
by forcing all the data to be scaled approximately, we get

apparently larger values of � in both �J and �H. For
example, � estimated from �J in such way is 0:36�
0:02 for d � 3 and 0:84� 0:04 for d � 4.

The crossover behavior in the MK SG shown in Fig. 3
look very sharp in comparison with that in the EA SG. This
is simply because the ranges ofH and L, and soX, are quite
wide. The enlargement of the crossover region such as to
0:1 & X & 10 is realized by choosing the parameter
ranges, for example, 0:015J 	 H 	 0:95J and L � 3n
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with 1 	 n 	 4. These ranges are close to those we are
forced to choose for the EA SG. We then obtain quite
similar results (not shown) as those obtained in the EA
SG (Fig. 4). Within these ranges �J increases monotoni-
cally for smaller H and it decreases monotonically for
larger H. Still, such data are reasonably scaled with the
same value of � as indicated in Fig. 3. These observations
imply that the observed scaling behaviors in both the MK
and EA SGs are essentially the same.

Interpretation of results.—We first consider the cross-
over behavior in �H. Since the field is not applied to the
boundary spins, the effective fields H�L�eff and H�R�eff originate
only through the influence of the field applied to the bulk
spins fSig. For example, if the correlation between Si and
SL is positive, an upward field to Si tends to direct SL
upwards. Since the correlation can be either positive or
negative depending on the site, the contribution to the
effective fields can also be either positive or negative.
When the effective coupling Jeff exists, SL and SR receive
such random contributions, whose amplitude is propor-
tional to H, from all the bulk spins. This yields �H which
is proportional to HLd=2. When Jeff vanishes, on the other
hand, �H / L�d�1�=2 because the boundary spins, which
interact with Ld�1 spins, receive contributions only from
spins around their surfaces.

Now the meaning of our results are clear. As shown in
Fig. 2, the Zeeman energy (�H) begins to overwhelm the
effective coupling (�J) around L � ‘cr�H� since �H in-
creases faster than �J. After that, �J rapidly drops to zero.
This means that the SG order whose length scale is longer
than ‘cr�H� is destroyed by the field. As described above,
�H is kept increasing but with the change of its exponent
from d=2 to �d� 1�=2. The decay of C�L;H� to zero for
larger scaling variable X indicates the vanishing of the
correlation between the state in zero field and that in field.
The observed scaling behavior consistently implies the
absence of the SG phase in any nonzero field.

Discussion and conclusions.—Let us comment on the
fragility of the SG phase to other perturbations. According
to the droplet theory, a change in the temperature (or
bonds) by the amount � gives rise to a new SG state which
is decorrelated from the original one beyond the length
scale ‘ch���. Here ‘ch��� is proportional to ��1=� with
� � ds=2� �, ds being the fractal dimension of droplets.
This type of the fragility of the SG state is called tempera-
ture or bond chaos [23]. Our recent DWRG study [17] in
the EA SG has indeed revealed the existence of ‘ch���. A
key observable in such studies is the correlation coefficient
C of Eq. (3) with H replaced by �. As shown in Figs. 3–5,
the system exhibits similar fragility against the field per-
turbation. However, it must be noted that vanishing of �J
for larger X strongly indicates that the magnetic field
destroys the SG order itself in sharp contrast to the cases
of temperature and bond perturbations.

To conclude, thermodynamic observables of the EA SG
are confirmed to follow the scaling in terms of the cross-
over length ‘cr�H� as predicted by the droplet theory, the
consequence of which is the absence of the SG phase in
field. It should be noted that above the upper critical
dimension du � 6 different scenario may hold [24]. We
consider that all of our results concerning the temperature,
bond and field perturbations provide strong evidence for
the appropriateness of the droplet theory for the description
of SGs in low dimensions.
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