43,297 research outputs found

    Monopole Excitation to Cluster States

    Get PDF
    We discuss strength of monopole excitation of the ground state to cluster states in light nuclei. We clarify that the monopole excitation to cluster states is in general strong as to be comparable with the single particle strength and shares an appreciable portion of the sum rule value in spite of large difference of the structure between the cluster state and the shell-model-like ground state. We argue that the essential reasons of the large strength are twofold. One is the fact that the clustering degree of freedom is possessed even by simple shell model wave functions. The detailed feature of this fact is described by the so-called Bayman-Bohr theorem which tells us that SU(3) shell model wave function is equivalent to cluster model wave function. The other is the ground state correlation induced by the activation of the cluster degrees of freedom described by the Bayman-Bohr theorem. We demonstrate, by deriving analytical expressions of monopole matrix elements, that the order of magnitude of the monopole strength is governed by the first reason, while the second reason plays a sufficient role in reproducing the data up to the factor of magnitude of the monopole strength. Our explanation is made by analysing three examples which are the monopole excitations to the 02+0^+_2 and 03+0^+_3 states in 16^{16}O and the one to the 02+0^+_2 state in 12^{12}C. The present results imply that the measurement of strong monopole transitions or excitations is in general very useful for the study of cluster states.Comment: 11 pages, 1 figure: revised versio

    Operator ordering and Classical soliton path in Two-dimensional N=2 supersymmetry with Kahler potential

    Full text link
    We investigate a 2-dimensional N=2 supersymmetric model which consists of n chiral superfields with Kahler potential. When we define quantum observables, we are always plagued by operator ordering problem. Among various ways to fix the operator order, we rely upon the supersymmetry. We demonstrate that the correct operator order is given by requiring the super Poincare algebra by carrying out the canonical Dirac bracket quantization. This is shown to be also true when the supersymmetry algebra has a central extension by the presence of topological soliton. It is also shown that the path of soliton is a straight line in the complex plane of superpotential W and triangular mass inequality holds. And a half of supersymmetry is broken by the presence of soliton.Comment: 13 pages, typos correcte

    Inflation in Random Landscapes with two energy scales

    Get PDF
    We investigate inflation in a multi-dimensional landscape with a hierarchy of energy scales, motivated by the string theory, where the energy scale of Kahler moduli is usually assumed to be much lower than that of complex structure moduli and dilaton field. We argue that in such a landscape, the dynamics of slow-roll inflation is governed by the low-energy potential, while the initial condition for inflation are determined by tunneling through high-energy barriers. We then use the scale factor cutoff measure to calculate the probability distribution for the number of inflationary e-folds and the amplitude of density fluctuations QQ, assuming that the low-energy landscape is described by a random Gaussian potential with a correlation length much smaller than MplM_{\rm pl}. We find that the distribution for QQ has a unique shape and a preferred domain, which depends on the parameters of the low-energy landscape. We discuss some observational implications of this distribution and the constraints it imposes on the landscape parameters.Comment: 39 pages, 3 figures; (v2) minor change

    Localization Properties of Electronic States in Polaron Model of poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers

    Get PDF
    We numerically investigate localization properties of electronic states in a static model of poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers with realistic parameters obtained by quantum-chemical calculation. The randomness in the on-site energies caused by the electron-phonon coupling are completely correlated to the off-diagonal parts. In the single electron model, the effect of the hydrogen-bond stretchings, the twist angles between the base pairs and the finite system size effects on the energy dependence of the localization length and on the Lyapunov exponent are given. The localization length is reduced by the influence of the fluctuations in the hydrogen bond stretchings. It is also shown that the helical twist angle affects the localization length in the poly(dG)-poly(dC) DNA polymer more strongly than in the poly(dA)-poly(dT) one. Furthermore, we show resonance structures in the energy dependence of the localization length when the system size is relatively small.Comment: 6 pages, 6 figure

    Pump- and Probe-polarization Analyses of Ultrafast Carrier Dynamics in Organic Superconductors

    Get PDF
    We investigated photo-excited carrier relaxation dynamics in the strongly correlated organic superconductors kappa-(BEDT-TTF)(2)Cu(NCS)(2) and kappa-(BEDT-TTF)(2)Cu[N(CN)(2)]Br, using different polarizations of pump and probe pulses. Below the glasslike transition temperature (T (g)) anisotropic responses for probe polarization were observed in both compounds. Decomposing the data into anisotropic and isotropic components, we found the anisotropic component shows no pump polarization dependence, meaning that dissipative excitation process was dominant for the anisotropic carrier relaxation. This behavior indicates that the appearance of anisotropic responses can be associated with spatial symmetry breaking due to structural change of BEDT-TTF molecules

    Distinguished self-adjoint extensions of Dirac operators via Hardy-Dirac inequalities

    Full text link
    We prove some Hardy-Dirac inequalities with two different weights including measure valued and Coulombic ones. Those inequalities are used to construct distinguished self-adjoint extensions of Dirac operators for a class of diagonal potentials related to the weights in the above mentioned inequalities.Comment: 16 page

    Spin and charge orders and their hole-doping dependence in single layered cobaltate La2-xCaxCoO4(0.3<x<0.8)

    Full text link
    Neutron scattering experiments were performed on single crystals of layered cobalt-oxides La2-xCaxCoO4 (LCCO) to characterize the charge and spin orders in a wide hole-doping range of 0.3<x<0.8. For a commensurate value of x=0.5 in (H,0,L) plane, two types of superlattice reflections concomitantly appear at low temperature; one corresponds to a checkerboard charge ordered pattern of Co2+/Co3+ ions and the other is magnetic in origin. Further, the latter magnetic-superlattice peaks show two types of symmetry in the reflections, suggesting antiferromagnetic-stacking (AF-S) and ferromagnetic-stacking (F-S) patterns of spins along the c direction. From the hole-doping dependence, the in-plane correlation lengths of both charge and spin orders are found to give a maximum at x=0.5. These features are the same with those of x=0.5 in La1-xSr1+xMnO4 (LSMO), a typical checkerboard and spin ordered compound. However, in (H,H,L) plane, we found a magnetic scattering peak at Q=(1/4,1/4,1/2) position below TN. This magnetic peak can not be understood by considering the Co2+ spin configuration, suggesting that this peak is originated from Co3+ spin order. By analyzing these superlattice reflections, we found that they are originated from high-spin state of Co3+ spin order.Comment: 11pages, 9 figures. Submitted to J. Phys. Soc. Jp

    Filling-dependence of the zigzag Hubbard ladder for a quasi-one-dimensional superconductor Pr_2Ba_4Cu_7O_{15-delta}

    Full text link
    We investigate filling dependence of the zigzag Hubbard ladder, using density matrix renormalization group method. We illustrate the chemical-potential vs. electron-density and spin gap vs. electron density curves, which reflect characteristic properties of the electron state.On the basis of the obtained phase diagram, we discuss the connection to a novel quasi-one-dimensional superconductor Pr2_2Ba4_4Cu7_7O15δ_{15-\delta}.Comment: 5 pages, 6 figures, fig.4 is adde
    corecore