705 research outputs found

    A Scaling-up Synthesis From Laboratory Scale to Pilot Scale and to Near Commercial Scale for Paste-Glue Production

    Get PDF
    This paper concerns on developing a synthesis method of paste-glue production for gummed tape using a corn-based starch as an alternative feedstock from laboratory-scale to pilot-scale and to near commercial scale. Basically, two methods of synthesis were developed to produce paste-glue in laboratory scale. Based on the two methods, we then scale-up the earlier laboratory scale data to pilot-scale and near commercial-scale for developing a large scale process production of paste-glue. Scaling up production from 1,000 ml reactor to 500 L pilot-scale reactor and 1,500 L near commercial scale reactor, we monitored pathway of temperature increase during reaction as well as adjustment of operating condition conducted for laboratory experimental data in order to produce a good quality of paste-glue. Some scaling up parameters have been found as well as critical parameters for a good product quality such as viscosity and ceiling temperature of the reaction which are very crucial in order to give optimum operating condition. We have selected synthesis method of paste-glue production and found the range of the parameters in order to produce a very good quality of paste-glue in pilot scale and near commercial scale

    Dynamical surface structures in multi-particle-correlated surface growths

    Full text link
    We investigate the scaling properties of the interface fluctuation width for the QQ-mer and QQ-particle-correlated deposition-evaporation models. These models are constrained with a global conservation law that the particle number at each height is conserved modulo QQ. In equilibrium, the stationary roughness is anomalous but universal with roughness exponent α=1/3\alpha=1/3, while the early time evolution shows nonuniversal behavior with growth exponent β\beta varying with models and QQ. Nonequilibrium surfaces display diverse growing/stationary behavior. The QQ-mer model shows a faceted structure, while the QQ-particle-correlated model a macroscopically grooved structure.Comment: 16 pages, 10 figures, revte

    Weighted Evolving Networks

    Full text link
    Many biological, ecological and economic systems are best described by weighted networks, as the nodes interact with each other with varying strength. However, most network models studied so far are binary, the link strength being either 0 or 1. In this paper we introduce and investigate the scaling properties of a class of models which assign weights to the links as the network evolves. The combined numerical and analytical approach indicates that asymptotically the total weight distribution converges to the scaling behavior of the connectivity distribution, but this convergence is hampered by strong logarithmic corrections.Comment: 5 pages, 3 figure

    Observation of D0−Dˉ0D^0-\bar{D}^0 Mixing in e+e−e^+e^- Collisions

    Full text link
    We observe D0−Dˉ0D^0-\bar{D}^0 mixing in the decay D0→K+π−D^0\rightarrow K^+\pi^- using a data sample of integrated luminosity 976 fb−1^{-1} collected with the Belle detector at the KEKB e+e−e^+e^- asymmetric-energy collider. We measure the mixing parameters x′2=(0.09±0.22)×10−3{x'}^2 = (0.09\pm0.22)\times 10^{-3} and y′=(4.6±3.4)×10−3y' = (4.6\pm3.4)\times 10^{-3} and the ratio of doubly Cabibbo-suppressed to Cabibbo-favored decay rates RD=(3.53±0.13)×10−3R_D = (3.53\pm0.13)\times 10^{-3}, where the uncertainties are statistical and systematic combined. Our measurement excludes the no-mixing hypothesis at the 5.1 standard deviation level.Comment: 6 pages, 4 figure

    Search for D0D^{0} decays to invisible final states at Belle

    Full text link
    We report the result from the first search for D0D^0 decays to invisible final states. The analysis is performed on a data sample of 924 fb−1\rm{fb}^{-1} collected at and near the Υ(4S)\Upsilon(4S) and Υ(5S)\Upsilon(5S) resonances with the Belle detector at the KEKB asymmetric-energy e+e−e^{+}e^{-} collider. The absolute branching fraction is determined using an inclusive D0D^0 sample, obtained by fully reconstructing the rest of the particle system including the other charmed particle. No significant signal yield is observed and an upper limit of 9.4×10−59.4\times 10^{-5} is set on the branching fraction of D0D^0 to invisible final states at 90\% confidence level.Comment: 17 pages, 4 figures, submitted to PRD(RC

    Measurements of the masses and widths of the Σc(2455)0/++\Sigma_{c}(2455)^{0/++} and Σc(2520)0/++\Sigma_{c}(2520)^{0/++} baryons

    Full text link
    We present measurements of the masses and decay widths of the baryonic states Σc(2455)0/++\Sigma_{c}(2455)^{0/++} and Σc(2520)0/++\Sigma_{c}(2520)^{0/++} using a data sample corresponding to an integrated luminosity of 711 fb−1^{-1} collected with the Belle detector at the KEKB e+e−e^{+}e^{-} asymmetric-energy collider operating at the Υ(4S)\Upsilon(4S) resonance. We report the mass differences with respect to the Λc+\Lambda_{c}^{+} baryon M(Σc(2455)0)−M(Λc+)=167.29±0.01±0.02M(\Sigma_{c}(2455)^{0})-M(\Lambda_{c}^{+}) = 167.29\pm0.01\pm0.02 MeV/c2c^{2}, M(Σc(2455)++)−M(Λc+)=167.51±0.01±0.02M(\Sigma_{c}(2455)^{++})-M(\Lambda_{c}^{+}) = 167.51\pm0.01\pm0.02 MeV/c2c^{2}, M(Σc(2520)0)−M(Λc+)=231.98±0.11±0.04M(\Sigma_{c}(2520)^{0})-M(\Lambda_{c}^{+}) = 231.98\pm0.11\pm0.04 MeV/c2c^{2}, M(Σc(2520)++)−M(Λc+)=231.99±0.10±0.02M(\Sigma_{c}(2520)^{++})-M(\Lambda_{c}^{+}) = 231.99\pm0.10\pm0.02 MeV/c2c^{2}, and the decay widths Γ(Σc(2455)0)=1.76±0.04−0.21+0.09\Gamma(\Sigma_{c}(2455)^{0}) = 1.76\pm0.04^{+0.09}_{-0.21} MeV/c2c^{2}, Γ(Σc(2455)++)=1.84±0.04−0.20+0.07\Gamma(\Sigma_{c}(2455)^{++}) = 1.84\pm0.04^{+0.07}_{-0.20} MeV/c2c^{2}, Γ(Σc(2520)0)=15.41±0.41−0.32+0.20\Gamma(\Sigma_{c}(2520)^{0}) = 15.41\pm0.41^{+0.20}_{-0.32} MeV/c2c^{2}, Γ(Σc(2520)++)=14.77±0.25−0.30+0.18\Gamma(\Sigma_{c}(2520)^{++}) = 14.77\pm0.25^{+0.18}_{-0.30} MeV/c2c^{2}, where the first uncertainties are statistical and the second are systematic. The isospin mass splittings are measured to be M(Σc(2455)++)−M(Σc(2455)0)=0.22±0.01±0.01M(\Sigma_{c}(2455)^{++})-M(\Sigma_{c}(2455)^{0})=0.22\pm0.01\pm0.01 MeV/c2c^{2} and M(Σc(2520)++)−M(Σc(2520)0)=0.01±0.15±0.03M(\Sigma_{c}(2520)^{++})-M(\Sigma_{c}(2520)^{0})=0.01\pm0.15\pm0.03 MeV/c2c^{2}. These results are the most precise to date.Comment: 13 pages, 4 figures, Submitted to PRD(RC
    • …
    corecore