39 research outputs found

    The microbiome revolution

    No full text

    Non–beta blocker enantiomers of propranolol and atenolol inhibit vasculogenesis in infantile hemangioma

    No full text
    Propranolol and atenolol, current therapies for problematic infantile hemangioma (IH), are composed of R(+) and S(-) enantiomers: the R(+) enantiomer is largely devoid of beta blocker activity. We investigated the effect of R(+) enantiomers of propranolol and atenolol on the formation of IH-like blood vessels from hemangioma stem cells (HemSCs) in a murine xenograft model. Both R(+) enantiomers inhibited HemSC vessel formation in vivo. In vitro, similar to R(+) propranolol, both atenolol and its R(+) enantiomer inhibited HemSC to endothelial cell differentiation. As our previous work implicated the transcription factor sex-determining region Y (SRY) box transcription factor 18 (SOX18) in propranolol-mediated inhibition of HemSC to endothelial differentiation, we tested in parallel a known SOX18 small-molecule inhibitor (Sm4) and show that this compound inhibited HemSC vessel formation in vivo with efficacy similar to that seen with the R(+) enantiomers. We next examined how R(+) propranolol alters SOX18 transcriptional activity. Using a suite of biochemical, biophysical, and quantitative molecular imaging assays, we show that R(+) propranolol directly interfered with SOX18 target gene trans activation, disrupted SOX18-chromatin binding dynamics, and reduced SOX18 dimer formation. We propose that the R(+) enantiomers of widely used beta blockers could be repurposed to increase the efficiency of current IH treatment and lower adverse associated side effects

    Myocardial Infarction Alters Adaptation of the Tethered Mitral Valve

    Get PDF
    BACKGROUND: In patients with myocardial infarction (MI), leaflet tethering by displaced papillary muscles induces mitral regurgitation (MR), which doubles mortality. Mitral valves (MVs) are larger in such patients but fibrosis sets in counterproductively. The investigators previously reported that experimental tethering alone increases mitral valve area in association with endothelial-to-mesenchymal transition. OBJECTIVES: The aim of this study was to explore the clinically relevant situation of tethering and MI, testing the hypothesis that ischemic milieu modifies mitral valve adaptation. METHODS: Twenty-three adult sheep were examined. Under cardiopulmonary bypass, the papillary muscle tips in 6 sheep were retracted apically to replicate tethering, short of producing MR (tethered alone). Papillary muscle retraction was combined with apical MI created by coronary ligation in another 6 sheep (tethered plus MI), and left ventricular remodeling was limited by external constraint in 5 additional sheep (left ventricular constraint). Six sham-operated sheep were control subjects. Diastolic mitral valve surface area was quantified by 3-dimensional echocardiography at baseline and after 58 ± 5 days, followed by histopathology and flow cytometry of excised leaflets. RESULTS: Tethered plus MI leaflets were markedly thicker than tethered-alone valves and sham control subjects. Leaflet area also increased significantly. Endothelial-to-mesenchymal transition, detected as α-smooth muscle actin-positive endothelial cells, significantly exceeded that in tethered-alone and control valves. Transforming growth factor-β, matrix metalloproteinase expression, and cellular proliferation were markedly increased. Uniquely, tethering plus MI showed endothelial activation with vascular adhesion molecule expression, neovascularization, and cells positive for CD45, considered a hematopoietic cell marker. Tethered plus MI findings were comparable with external ventricular constraint. CONCLUSIONS: MI altered leaflet adaptation, including a profibrotic increase in valvular cell activation, CD45-positive cells, and matrix turnover. Understanding cellular and molecular mechanisms underlying leaflet adaptation and fibrosis could yield new therapeutic opportunities for reducing ischemic MR
    corecore