151 research outputs found

    Overlooked Diversity of Ultramicrobacterial Minorities at the Air-Sea Interface

    Get PDF
    Members of the Candidate phylum Patescibacteria, also called Candidate Phyla Radiation (CPR), are described as ultramicrobacteria with limited metabolic capacities. Wide diversity and relative abundances up to 80% in anaerobic habitats, e.g., in groundwater or sediments are characteristic for Candidatus Patescibacteria. However, only few studies exist for marine surface water. Here, we report the presence of 40 patescibacterial candidate clades at air-sea interfaces, including the upper water layer, floating foams and the sea-surface microlayer (SML), a < 1 mm layer at the boundary between ocean and atmosphere. Particle-associated (>3 ÎŒm) and free-living (3–0.2 ÎŒm) samples were obtained from the Jade Bay, North Sea, and 16S rRNA (gene) amplicons were analyzed. Although the abundance of Cand. Patescibacteria representatives were relatively low (<1.3%), members of Cand. Kaiserbacteria and Cand. Gracilibacteria were found in all samples. This suggests profound aerotolerant capacities of these phylogenetic lineages at the air-sea interface. The presence of ultramicrobacteria in the >3 ÎŒm fraction implies adhesion to bigger aggregates, potentially in anoxic niches, and a symbiotic lifestyle. Due to their small sizes, Cand. Patescibacteria likely become aerosolized to the atmosphere and dispersed to land with possible implications for affecting microbial communities and associated processes in these ecosystems.J.R.: C.S., O.W. and this study were funded by the European Research Council project PASSME, grant number GA336408. The picture of seafoam was taken during a campaign funded by the Assemble Plus project MIDSEAS (European Union’s Horizon 2020 research and innovation program, Grant Agreement No. 730984). D.P.R.H. was supported by the European Regional Development Fund/Estonian Research Council funded by “Mobilitas Plus Top Researcher grant MOBTT24”. A.J.P. received funding by the Ministerium fĂŒr Kultur und Wissenschaft des Landes Nordrhein-Westfalen (“Nachwuchsgruppe Alexander Probst”). The APC was funded by the Open Access Publication Fund of the University of Duisburg-Essen.J.R.: C.S., O.W. and this study were funded by the European Research Council project PASSME, grant number GA336408. The picture of seafoam was taken during a campaign funded by the Assemble Plus project MIDSEAS (European Union’s Horizon 2020 research and innovation program, Grant Agreement No. 730984). D.P.R.H. was supported by the European Regional Development Fund/Estonian Research Council funded by “Mobilitas Plus Top Researcher grant MOBTT24”. A.J.P. received funding by the Ministerium fĂŒr Kultur und Wissenschaft des Landes Nordrhein-Westfalen (“Nachwuchsgruppe Alexander Probst”). The APC was funded by the Open Access Publication Fund of the University of Duisburg-Essen

    A marine biogenic source of atmospheric ice nucleating particles

    Get PDF
    The amount of ice present in clouds can affect cloud lifetime, precipitation and radiative properties1,2. The formation of ice in clouds is facilitated by the presence of airborne ice nucleating particles1,2. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice3-11. Sea spray aerosol contains large amounts of organic material that is ejected into the atmosphere during bubble bursting at the organically enriched sea-air interface or sea surface microlayer12-19. Here we show that organic material in the sea surface microlayer nucleates ice under conditions relevant for mixed-phase cloud and high-altitude ice cloud formation. The ice nucleating material is likely biogenic and less than ~0.2 ÎŒm in size. We find that exudates separated from cells of the marine diatom T. Pseudonana nucleate ice and propose that organic material associated with phytoplankton cell exudates is a likely candidate for the observed ice nucleating ability of the microlayer samples. Global model simulations of marine organic aerosol in combination with our measurements suggest that marine organic material may be an important source of ice nucleating particles in remote marine environments such as the Southern Ocean, North Pacific and North Atlantic

    Neustonic versus epiphytic bacteria of eutrophic lake and their biodegradation ability on deltamethrin

    Get PDF
    This study evaluated biodegradation of the insecticide deltamethrin (1 ÎŒg l−1) by pure cultures of neustonic (n = 25) and epiphytic (n = 25) bacteria and by mixed cultures (n = 1), which consisted of a mixture of 25 bacterial strains isolated from the surface microlayer (SM ≈ 250 Όm) and epidermis of the Common Reed (Phragmites australis, (Cav.) Trin. ex Steud.) growing in the littoral zone of eutrophic lake CheƂmĆŒyƄskie. Results indicate that neustonic and epiphytic bacteria are characterized by a similar average capacity to degrade deltamethrin. After a 15-day incubation, bacteria isolated from the surface microlayer reduced the initial concentration of deltamethrin by 60%, while the average effectiveness of the bacteria found on the Common Reed equaled 47%

    Introduction to special section on Recent Advances in the Study of Optical Variability in the Near-Surface and Upper Ocean

    Get PDF
    Optical variability occurs in the near-surface and upper ocean on very short time and space scales (e.g., milliseconds and millimeters and less) as well as greater scales. This variability is caused by solar, meteorological, and other physical forcing as well as biological and chemical processes that affect optical properties and their distributions, which in turn control the propagation of light across the air-sea interface and within the upper ocean. Recent developments in several technologies and modeling capabilities have enabled the investigation of a variety of fundamental and applied problems related to upper ocean physics, chemistry, and light propagation and utilization in the dynamic near-surface ocean. The purpose here is to provide background for and an introduction to a collection of papers devoted to new technologies and observational results as well as model simulations, which are facilitating new insights into optical variability and light propagation in the ocean as they are affected by changing atmospheric and oceanic conditions

    Blue pigmentation of neustonic copepods benefits exploitation of a prey-rich niche at the air-sea boundary

    Get PDF
    The sea-surface microlayer (SML) at the air-sea interface is a distinct, under-studied habitat compared to the subsurface and copepods, important components of ocean food webs, have developed key adaptations to exploit this niche. By using automated SML sampling, high-throughput sequencing and unmanned aerial vehicles, we report on the distribution and abundance of pontellid copepods in relation to the unique biophysicochemical signature of the SML. We found copepods in the SML even during high exposure to sun-derived ultraviolet radiation and their abundance was significantly correlated to increased algal biomass. We additionally investigated the significance of the pontellids’ blue pigmentation and found that the reflectance peak of the blue pigment matched the water-leaving spectral radiance of the ocean surface. This feature could reduce high visibility at the air-sea boundary and potentially provide camouflage of copepods from their predators
    • 

    corecore