2,121 research outputs found

    Development of a high efficiency thin silicon solar cell

    Get PDF
    A key to the success of this program was the breakthrough development of a technology for producing ultra-thin silicon slices which are very flexible, resilient, and tolerant of moderate handling abuse. Experimental topics investigated were thinning technology, gaseous junction diffusion, aluminum back alloying, internal reflectance, tantalum oxide anti-reflective coating optimization, slice flexibility, handling techniques, production rate limiting steps, low temperature behavior, and radiation tolerance

    Development of a high efficiency thin silicon solar cell

    Get PDF
    Significant improvements in open-circuit voltage and conversion efficiency, even on relatively high bulk resistivity silicon, were achieved by using a screen-printed aluminum paste back surface field. A 4 sq cm 50 micron m thick cell was fabricated from textured 10 omega-cm silicon which had an open-circuit voltage of 595 mV and AMO conversion efficiency at 25 C of 14.3%. The best 4 sq cm 50 micron thick cell (2 omega-cm silicon) produced had an open-circuit voltage of 607 mV and an AMO conversion efficiency of 15%. Processing modifications are described which resulted in better front contact integrity and reduced breakage. These modifications were utilized in the thin cell pilot line to fabricate 4 sq cm cells with an average AMO conversion efficiency at 25 C of better than 12.5% and with lot yields as great as 51% of starts; a production rate of 10,000 cells per month was demonstrated. A pilot line was operated which produced large area (25 cm) ultra-thin cells with an average AMO conversion efficiency at 25 deg of better than 11.5% and a lot yield as high as 17%

    Process Research on Polycrystalline Silicon Material (PROPSM)

    Get PDF
    Results of hydrogen-passivated polycrysalline silicon solar cell research are summarized. The short-circuit current of solar cells fabricated from large-grain cast polycrystalline silicon is nearly equivalent to that of single-crystal cells, which indicates long bulk minority-carrier diffusion length. Treatments with molecular hydrogen showed no effect on large-grain cast polycrystalline silicon solar cells

    Process Research on Polycrystalline Silicon Material (PROPSM)

    Get PDF
    Results of hydrogen-passivated polycrystalline silicon solar cells are summarized. Very small grain or short minority-carrier diffusion length silicon was used. Hydrogenated solar cells fabricated from this material appear to have effective minority-carrier diffusion lengths that are still not very long, as shown by the open-circuit voltages of passivated cells that are still significantly less than those of single-crystal solar cells. The short-circuit current of solar cells fabricated from large-grain cast polycrystalline silicon is nearly equivalent to that of single-crystal cells, which indicates long bulk minority-carrier diffusion length. However, the open-circuit voltage, which is sensitive to grain boundary recombination, is sometimes 20 to 40 mV less. The goal was to minimize variations in open-circuit voltage and fill-factor caused by defects by passivating these defects using a hydrogenation process. Treatments with molecular hydrogen showed no effect on large-grain cast polycrystaline silicon solar cells

    The effect of spatial, spectral and radiometric factors on classification accuracy using thematic mapper data

    Get PDF
    An experiment of a factorial design was conducted to test the effects on classification accuracy of land cover types due to the improved spatial, spectral and radiometric characteristics of the Thematic Mapper (TM) in comparison to the Multispectral Scanner (MSS). High altitude aircraft scanner data from the Airborne Thematic Mapper instrument was acquired over central California in August, 1983 and used to simulate Thematic Mapper data as well as all combinations of the three characteristics for eight data sets in all. Results for the training sites (field center pixels) showed better classification accuracies for MSS spatial resolution, TM spectral bands and TM radiometry in order of importance

    Coplanar back contacts for thin silicon solar cells

    Get PDF
    The type of coplanar back contact solar cell described was constructed with interdigitated n(+) and p(+) type regions on the back of the cell, such that both contacts are made on the back with no metallization grid on the front. This cell construction has several potential advantages over conventional cells for space use namely, convenience of interconnects, lower operating temperatures and higher efficiency due to the elimination of grid shadowing. However, the processing is more complex, and the cell is inherently more radiation sensitive. The latter problem can be reduced substantially by making the cells very thin (approximately 50 micrometers). Two types of interdigitated back contact cells are possible, the types being dependent on the character of the front surface. The front surface field cell has a front surface region that is of the same conductivity type as the bulk but is more heavily doped. This creates an electric field at the surface which repels the minority carriers. The tandem junction cell has a front surface region of a conductivity type that is opposite to that of the bulk. The junction thus created floats to open circuit voltage on illumination and injects carriers into the bulk which then can be collected at the rear junction. For space use, the front surface field cell is potentially more radiation resistant than the tandem junction cell because the flow of minority carriers (electrons) into the bulk will be less sensitive to the production of recombination centers, particularly in the space charge region at the front surface

    Customer Inspired Innovation with Designer as Innovation Catalyst

    Full text link
    This study explores the processes of introduction, implementation and integration of design-led innovation within a family owned company driven by engineering innovation in a sector dominated by product and process improvements. This paper is based on the outcomes of an investigation of a family manufacturing company in the METS sector over an 11-month period, where the researcher was embedded in the firm to deliver value to the company by using an action research approach. The design innovation catalyst used a design-led innovation process to capture customer insights that led to changes at the leadership, managerial and employee level of the organisation

    Developing design capability in nonprofit organizations

    Get PDF
    © 2017 Massachusetts Institute of Technology. This article presents findings from a two-year longitudinal action, research study exploring the challenges and outcomes of attempting to develop design capability in one of Australia’s largest non-profit aged-care providers. The research identifies four distinct objectives for design utilization in practice, and suggests that existing approaches for design utilization overlook non-profit organizations that seek both economic and social viability. While the objectives of realizing economic and social outcomes are addressed in design literature, there is an absence of literature detailing how non-profit organizations could utilize design to realize these outcomes. This research, therefore, contributes the non-profit design ladder-a framework to assist non-profit organizations to further develop their utilization of design and foster design as an organizational capability

    Assessment of Thematic Mapper band-to-band registration by the block correlation method

    Get PDF
    Rectangular blocks of pixels from one band image were statistically correlated against blocks centered on identical pixels from a second band image. The block pairs were shifted in pixel increments both vertically and horizontally with respect to each other and the correlation coefficient to the maximum correlation was taken as the best estimate of registration error for each block pair. For the band combinations of the Arkansas scene studied, the misregistration of TM spectral bands within the noncooled focal plane lie well within the 0.2 pixel target specification. Misregistration between the middle IR bands is well within this specification also. The thermal IR band has an apparent misregistration with TM band 7 of approximately 3 pixels in each direction. The TM band 3 has a misregistration of approximately 0.2 pixel in the across-scan direction and 0.5 pixel in the along-scan direction, with both TM bands 5 and 7

    Current International Policies on Plant Breeders’ Rights

    Get PDF
    Established and supported under the Australian Government’s Cooperative Research Centre Progra
    • …
    corecore