52 research outputs found

    CD26/dipeptidyl peptidase IV (CD26/DPPIV) is highly expressed in peripheral blood of HIV-1 exposed uninfected Female sex workers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Design of effective vaccines against the human immunodeficiency virus (HIV-1) continues to present formidable challenges. However, individuals who are exposed HIV-1 but do not get infected may reveal correlates of protection that may inform on effective vaccine design. A preliminary gene expression analysis of HIV resistant female sex workers (HIV-R) suggested a high expression CD26/DPPIV gene. Previous studies have indicated an anti-HIV effect of high CD26/DPPIV expressing cells in vitro. Similarly, high CD26/DPPIV protein levels in vivo have been shown to be a risk factor for type 2 diabetes. We carried out a study to confirm if the high CD26/DPPIV gene expression among the HIV-R were concordant with high blood protein levels and its correlation with clinical type 2 diabetes and other perturbations in the insulin signaling pathway.</p> <p>Results</p> <p>A quantitative CD26/DPPIV plasma analysis from 100 HIV-R, 100 HIV infected (HIV +) and 100 HIV negative controls (HIV Neg) showed a significantly elevated CD26/DPPIV concentration among the HIV-R group (mean 1315 ng/ml) than the HIV Neg (910 ng/ml) and HIV + (870 ng/ml, p < 0.001). Similarly a FACs analysis of cell associated DPPIV (CD26) revealed a higher CD26/DPPIV expression on CD4+ T-cells derived from HIV-R than from the HIV+ (90.30% vs 80.90 p = 0.002) and HIV Neg controls (90.30% vs 82.30 p < 0.001) respectively. A further comparison of the mean fluorescent intensity (MFI) of CD26/DPPIV expression showed a higher DPP4 MFI on HIV-R CD4+ T cells (median 118 vs 91 for HIV-Neg, p = 0.0003). An evaluation for hyperglycemia, did not confirm Type 2 diabetes but an impaired fasting glucose condition (5.775 mmol/L). A follow-up quantitative PCR analysis of the insulin signaling pathway genes showed a down expression of NFÎșB, a central mediator of the immune response and activator of HIV-1 transcription.</p> <p>Conclusion</p> <p>HIV resistant sex workers have a high expression of CD26/DPPIV in tandem with lowered immune activation markers. This may suggest a novel role for CD26/DPPIV in protection against HIV infection in vivo.</p

    Interaction of Crohn's Disease Susceptibility Genes in an Australian Paediatric Cohort

    Get PDF
    Genetic susceptibility is an important contributor to the pathogenesis of Crohn's disease (CD). We investigated multiple CD susceptibility genes in an Australian paediatric onset CD cohort. Newly diagnosed paediatric onset CD patients (n = 72) and controls (n = 98) were genotyped for 34 single nucleotide polymorphisms (SNPs) in 18 genetic loci. Gene-gene interaction analysis, gene-disease phenotype analysis and genetic risk profiling were performed for all SNPs and all genes. Of the 34 SNPs analysed, four polymorphisms on three genes (NOD2, IL23R, and region 3p21) were significantly associated with CD status (p<0.05). All three CD specific paediatric polymorphisms on PSMG1 and TNFRSF6B showed a trend of association with p<0.1. An additive gene-gene interaction involving TLR4, PSMG1, TNFRSF6B and IRGM was identified with CD. Genes involved in microbial processing (TLR4, PSMG1, NOD2) were significantly associated either at the individual level or in gene-gene interactive roles. Colonic disease was significantly associated with disease SNP rs7517847 (IL23R) (p<0.05) and colonic and ileal/colonic disease was significantly associated with disease SNP rs125221868 (IBD5) and SLC22A4 & SLC22A4/5 variants (p<0.05). We were able to demonstrate genetic association of several genes to CD in a paediatric onset cohort. Several of the observed associations have not been reported previously in association with paediatric CD patients. Our findings demonstrate that CD genetic susceptibility in paediatric patients presents as a complex interaction between numerous genes

    Effects of Reproductive Status, Social Rank, Sex and Group Size on Vigilance Patterns in Przewalski's Gazelle

    Get PDF
    Quantifying vigilance and exploring the underlying mechanisms has been the subject of numerous studies. Less attention has focused on the complex interplay between contributing factors such as reproductive status, social rank, sex and group size. Reproductive status and social rank are of particular interest due to their association with mating behavior. Mating activities in rutting season may interfere with typical patterns of vigilance and possibly interact with social rank. In addition, balancing the tradeoff between vigilance and life maintenance may represent a challenge for gregarious ungulate species rutting under harsh winter conditions. We studied vigilance patterns in the endangered Przewalski's gazelle (Procapra przewalskii) during both the rutting and non-rutting seasons to examine these issues.Field observations were carried out with focal sampling during rutting and non-rutting season in 2008-2009. Results indicated a complex interplay between reproductive status, social rank, sex and group size in determining vigilance in this species. Vigilance decreased with group size in female but not in male gazelles. Males scanned more frequently and thus spent more time vigilant than females. Compared to non-rutting season, gazelles increased time spent scanning at the expense of bedding in rutting season. During the rutting season, territorial males spent a large proportion of time on rutting activities and were less vigilant than non-territorial males. Although territorial males may share collective risk detection with harem females, we suggest that they are probably more vulnerable to predation because they seemed reluctant to leave rut stands under threats.Vigilance behavior in Przewalski's gazelle was significantly affected by reproductive status, social rank, sex, group size and their complex interactions. These findings shed light on the mechanisms underlying vigilance patterns and the tradeoff between vigilance and other crucial activities

    A Lung Segmental Model of Chronic <em>Pseudomonas</em> Infection in Sheep

    Get PDF
    Chronic lung infection with Pseudomonas aeruginosa is a major contributor to morbidity, mortality and premature death in cystic fibrosis. A new paradigm for managing such infections is needed, as are relevant and translatable animal models to identify and test concepts. We sought to improve on limitations associated with existing models of infection in small animals through developing a lung segmental model of chronic Pseudomonas infection in sheep.Using local lung instillation of P. aeruginosa suspended in agar beads we were able to demonstrate that such infection led to the development of a suppurative, necrotising and pyogranulomatous pneumonia centred on the instilled beads. No overt evidence of organ or systemic compromise was apparent in any animal during the course of infection. Infection persisted in the lungs of individual animals for as long as 66 days after initial instillation. Quantitative microbiology applied to bronchoalveolar lavage fluid derived from infected segments proved an insensitive index of the presence of significant infection in lung tissue (>10(4) cfu/g).The agar bead model of chronic P. aeruginosa lung infection in sheep is a relevant platform to investigate both the pathobiology of such infections as well as novel approaches to their diagnosis and therapy. Particular ethical benefits relate to the model in terms of refining existing approaches by compromising a smaller proportion of the lung with infection and facilitating longitudinal assessment by bronchoscopy, and also potentially reducing animal numbers through facilitating within-animal comparisons of differential therapeutic approaches
    • 

    corecore