54 research outputs found
Information Display System for Atypical Flight Phase
Method and system for displaying information on one or more aircraft flights, where at least one flight is determined to have at least one atypical flight phase according to specified criteria. A flight parameter trace for an atypical phase is displayed and compared graphically with a group of traces, for the corresponding flight phase and corresponding flight parameter, for flights that do not manifest atypicality in that phase
Differences in Ultrasonic Vocalizations Between Wild and Laboratory California Mice (\u3cem\u3ePeromyscus californicus\u3c/em\u3e)
Background: Ultrasonic vocalizations (USVs) emitted by muroid rodents, including laboratory mice and rats, are used as phenotypic markers in behavioral assays and biomedical research. Interpretation of these USVs depends on understanding the significance of USV production by rodents in the wild. However, there has never been a study of muroid rodent ultrasound function in the wild and comparisons of USVs produced by wild and laboratory rodents are lacking to date. Here, we report the first comparison of wild and captive rodent USVs recorded from the same species, Peromyscus californicus.
Methodology and Principal Findings: We used standard ultrasound recording techniques to measure USVs from California mice in the laboratory (Peromyscus Genetic Stock Center, SC, USA) and the wild (Hastings Natural History Reserve, CA, USA). To determine which California mouse in the wild was vocalizing, we used a remote sensing method that used a 12- microphone acoustic localization array coupled with automated radio telemetry of all resident Peromyscus californicus in the area of the acoustic localization array. California mice in the laboratory and the wild produced the same types of USV motifs. However, wild California mice produced USVs that were 2–8 kHz higher in median frequency and significantly more variable in frequency than laboratory California mice.
Significance: The similarity in overall form of USVs from wild and laboratory California mice demonstrates that production of USVs by captive Peromyscus is not an artifact of captivity. Our study validates the widespread use of USVs in laboratory rodents as behavioral indicators but highlights that particular characteristics of laboratory USVs may not reflect natural conditions
Network Analysis of Epidermal Growth Factor Signaling Using Integrated Genomic, Proteomic and Phosphorylation Data
To understand how integration of multiple data types can help decipher cellular responses at the systems level, we analyzed the mitogenic response of human mammary epithelial cells to epidermal growth factor (EGF) using whole genome microarrays, mass spectrometry-based proteomics and large-scale western blots with over 1000 antibodies. A time course analysis revealed significant differences in the expression of 3172 genes and 596 proteins, including protein phosphorylation changes measured by western blot. Integration of these disparate data types showed that each contributed qualitatively different components to the observed cell response to EGF and that varying degrees of concordance in gene expression and protein abundance measurements could be linked to specific biological processes. Networks inferred from individual data types were relatively limited, whereas networks derived from the integrated data recapitulated the known major cellular responses to EGF and exhibited more highly connected signaling nodes than networks derived from any individual dataset. While cell cycle regulatory pathways were altered as anticipated, we found the most robust response to mitogenic concentrations of EGF was induction of matrix metalloprotease cascades, highlighting the importance of the EGFR system as a regulator of the extracellular environment. These results demonstrate the value of integrating multiple levels of biological information to more accurately reconstruct networks of cellular response
Genetically-Based Olfactory Signatures Persist Despite Dietary Variation
Individual mice have a unique odor, or odortype, that facilitates individual recognition. Odortypes, like other phenotypes, can be influenced by genetic and environmental variation. The genetic influence derives in part from genes of the major histocompatibility complex (MHC). A major environmental influence is diet, which could obscure the genetic contribution to odortype. Because odortype stability is a prerequisite for individual recognition under normal behavioral conditions, we investigated whether MHC-determined urinary odortypes of inbred mice can be identified in the face of large diet-induced variation. Mice trained to discriminate urines from panels of mice that differed both in diet and MHC type found the diet odor more salient in generalization trials. Nevertheless, when mice were trained to discriminate mice with only MHC differences (but on the same diet), they recognized the MHC difference when tested with urines from mice on a different diet. This indicates that MHC odor profiles remain despite large dietary variation. Chemical analyses of urinary volatile organic compounds (VOCs) extracted by solid phase microextraction (SPME) and analyzed by gas chromatography/mass spectrometry (GC/MS) are consistent with this inference. Although diet influenced VOC variation more than MHC, with algorithmic training (supervised classification) MHC types could be accurately discriminated across different diets. Thus, although there are clear diet effects on urinary volatile profiles, they do not obscure MHC effects
Correction of non-intrusive drill core physical properties data for variability in recovered sediment volume
Recommended from our members
Correction of non-intrusive drill core physical properties data for variability in recovered sediment volume
Non-intrusive track-based physical properties measurements of sediment cores recovered during ocean drilling are often biased by imperfect recovery within sediment core liners, particularly in heterogeneous and/or partially lithified sediments. These biases result in misrepresentation in measurements of true sediment physical properties, and can complicate integration of the composite site records assembled from recovered cores with borehole logs of the stratigraphic section. Here we develop a strategy utilizing gamma ray attenuation (GRA) density to generate mass-specific magnetic susceptibility (MS) and natural gamma radiation (NGR) data. Shipboard GRA density is collected in all cores that comprise a site at equivalent or higher resolution than the corresponding MS and NGR data. All instruments are calibrated assuming a volume of sediment in their detector windows equivalent to that present in a perfectly full core liner; changes in sediment bulk density related to compaction, and/or imperfect sediment recovery resulting in a partially filled core liner thus influence all three measurements proportional to their detector sensitivities. In principle it may be possible to correct MS or NGR data for variable sediment volume by normalizing them to GRA measured at equivalent depth on a sensing track, assuming that the volumetric bias is comparable in all three datasets. Because GRA is measured in much greater detail, it must be smoothed by the known measurement windows of the other parameters for the assumption of comparable analytical sediment volume to be true. Normalizing MS or NGR by the equivalently smoothed GRA in down-hole records should thus remove the bias associated with variable sediment volume in the detector windows, allowing for robust mass-specific determination of these volume-based sediment physical properties.© The Authors 2015. Published by Oxford University Press on behalf of The Royal Astronomical Society. The published article can be found at: http://gji.oxfordjournals.org/content/202/2/1317Keywords: Downhole methods, Ocean drillingKeywords: Downhole methods, Ocean drillin
Differentiation of Gram-Negative Bacterial Aerosol Exposure Using Detected Markers in Bronchial-Alveolar Lavage Fluid
The identification of biosignatures of aerosol exposure to pathogens has the potential to provide useful diagnostic information. In particular, markers of exposure to different types of respiratory pathogens may yield diverse sets of markers that can be used to differentiate exposure. We examine a mouse model of aerosol exposure to known Gram negative bacterial pathogens, Francisella tularensis novicida and Pseudomonas aeruginosa. Mice were subjected to either a pathogen or control exposure and bronchial alveolar lavage fluid (BALF) was collected at four and twenty four hours post exposure. Small protein and peptide markers within the BALF were detected by matrix assisted laser desorption/ionization (MALDI) mass spectrometry (MS) and analyzed using both exploratory and predictive data analysis methods; principle component analysis and degree of association. The markers detected were successfully used to accurately identify the four hour exposed samples from the control samples. This report demonstrates the potential for small protein and peptide marker profiles to identify aerosol exposure in a short post-exposure time frame
Small protein biomarkers of culture in Bacillus spores detected using capillary liquid chromatography coupled with matrix assisted laser desorption/ionization mass spectrometry
Large-scale assessment of lepidopteran soybean pests and efficacy of Cry1Ac soybean in Brazil
AbstractThe soybean technology MON 87701 × MON 89788, expressing Cry1Ac and conferring tolerance to glyphosate, has been widely adopted in Brazil since 2013. However, pest shifts or resistance evolution could reduce the benefits of this technology. To assess Cry1Ac soybean performance and understand the composition of lepidopteran pest species attacking soybeans, we implemented large-scale sampling of larvae on commercial soybean fields during the 2019 and 2020 crop seasons to compare with data collected prior to the introduction of Cry1Ac soybeans. Chrysodeixis includens was the main lepidopteran pest in non-Bt fields. More than 98% of larvae found in Cry1Ac soybean were Spodoptera spp., although the numbers of Spodoptera were similar between Cry1Ac soybean and non-Bt fields. Cry1Ac soybean provided a high level of protection against Anticarsia gemmatalis, C. includens, Chloridea virescens and Helicoverpa spp. Significant reductions in insecticide sprays for lepidopteran control in soybean were observed from 2012 to 2019. Our study showed that C. includens and A. gemmatalis continue to be primary lepidopteran pests of soybean in Brazil and that Cry1Ac soybean continues to effectively manage the target lepidopteran pests. However, there was an increase in the relative abundance of non-target Spodoptera spp. larvae in both non-Bt and Cry1Ac soybeans.</jats:p
- …
