465 research outputs found

    Consistency of parity-violating pion-nucleon couplings extracted from measurements in 18F and 133Cs

    Full text link
    The recent measurement of the nuclear anapole moment of 133Cs has been interpreted to yield a value of the weak pion-nucleon coupling H_pi^1 which contradicts the upper limit from the 18F experiments. We argue that because of the sensitivity of the anapole moment to H_rho^0 in the odd proton nucleus 133Cs, there is a combination of weak meson-nucleon couplings which satisfies both experiments and which is (barely) in agreement with theory. In addition, the anapole moment measurement in 205Tl gives a constraint which is inconsistent with the value from 133Cs, calling into question the theory of nuclear anapole moments. We argue that measurements of directional asymmetry in n+p-->d+gamma and in the photo-disintegration of the deuteron by circularly polarized photons, combined with results from pp scattering, would determine H_pi^1 and several other weak meson-nucleon couplings in a model-independent way.Comment: 9 pages, RevTeX, 1 figure, eps, submitted to Phys. Rev.

    The Locational Impact of Wal-Mart Entrance: A Panel Study of the Retail Trade Sector in West Virginia

    Get PDF
    This paper examines the retail trade sector in 14 West Virginia counties from 1989 through 1996. A series of random effects models are tested on these panel data to measure the effect of the entrance of Wal- Mart stores in the county and in adjacent counties, and business cycle effects. This paper differs from earlier research in that it controls for endogeneity in the entrance decision of Wal-Mart in faster growing counties. This research finds a dramatic net increase in employment and wages in the Retail Trade sector (SIC 52) and a mild increase in the number of firms. The study finds a per capita wage increase in this industry, which is surprising but small. The paper concludes with further research recommendations.

    Utilizing small angle X-ray scattering to understand material failures and improve material lifetime

    Get PDF
    Please click Additional Files below to see the full abstract

    Evaluation of triclosan exposures on secretion of pro-inflammatory cytokines from human immune cells

    Get PDF
    Triclosan (TCS) is widely used in personal hygiene products, such as mouthwash and toothpaste, and is found in human tissues. Interleukin (IL)-1 beta (IL-1ÎČ), IL-6, tumor necrosis factor alpha (TNFα), and interferon gamma (IFNÎł) are pro-inflammatory cytokines and inappropriately elevated levels of each have been associated with pathologies including rheumatoid arthritis and certain cancers. Here we examine effects of TCS on the secretion of the pro-inflammatory cytokines from human immune cell preparations. TCS at concentrations between 0.05–5 ΌM consistently increased the secretion of IL-1ÎČ, IL-6, and TNFα within 24 h of exposure and the increases often maintained out to 6 days of exposure. TCS also induced increases in IFNÎł secretion, however the increases were most consistent after 48 h of exposure rather than within 24 h. Additionally, a role for both p44/42 and p38 MAPK in TCS-stimulated increases in IL-1ÎČ was seen in cells from some donors

    Formation and Structure of Low Density Exo-Neptunes

    Full text link
    Kepler has found hundreds of Neptune-size (2-6 R_Earth) planet candidates within 0.5 AU of their stars. The nature of the vast majority of these planets is not known because their masses have not been measured. Using theoretical models of planet formation, evolution and structure, we explore the range of minimum plausible masses for low-density exo-Neptunes. We focus on highly irradiated planets with T_eq>=500K. We consider two separate formation pathways for low-mass planets with voluminous atmospheres of light gases: core nucleated accretion and outgassing of hydrogen from dissociated ices. We show that Neptune-size planets at T_eq=500K with masses as small as a few times that of Earth can plausibly be formed core nucleated accretion coupled with subsequent inward migration. We also derive a limiting low-density mass-radius relation for rocky planets with outgassed hydrogen envelopes but no surface water. Rocky planets with outgassed hydrogen envelopes typically have computed radii well below 3 R_Earth. For both planets with H/He envelopes from core nucleated accretion and planets with outgassed hydrogen envelopes, we employ planet interior models to map the range of planet mass--envelope mass--equilibrium temperature parameter space that is consistent with Neptune-size planet radii. Atmospheric mass loss mediates which corners of this parameter space are populated by actual planets and ultimately governs the minimum plausible mass at a specified transit radius. We find that Kepler's 2-6 R_Earth planet candidates at T_eq=500--1000K could potentially have masses less than ~4 M_Earth. Although our quantitative results depend on several assumptions, our qualitative finding that warm Neptune-size planets can have masses substantially smaller than those given by interpolating the masses and radii of planets within our Solar System is robust.Comment: 17 pages, 9 figures, accepted for publication in Ap

    New measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    Get PDF
    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many body physics. Unfortunately, the pair correlation function g(r)g(r) inferred from neutron scattering measurements of the differential cross section dσdΩd\sigma \over d\Omega from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43~meV and 16.1~meV on liquid hydrogen at 15.6~K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1~meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra non-equilibrium component of orthohydrogen. Liquid parahydrogen is also a widely-used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. We describe our measurements and compare them with previous work.Comment: Edited for submission to Physical Review

    Nab: Measurement Principles, Apparatus and Uncertainties

    Get PDF
    The Nab collaboration will perform a precise measurement of 'a', the electron-neutrino correlation parameter, and 'b', the Fierz interference term in neutron beta decay, in the Fundamental Neutron Physics Beamline at the SNS, using a novel electric/magnetic field spectrometer and detector design. The experiment is aiming at the 10^{-3} accuracy level in (Delta a)/a, and will provide an independent measurement of lambda = G_A/G_V, the ratio of axial-vector to vector coupling constants of the nucleon. Nab also plans to perform the first ever measurement of 'b' in neutron decay, which will provide an independent limit on the tensor weak coupling.Comment: 12 pages, 6 figures, 1 table, talk presented at the International Workshop on Particle Physics with Slow Neutrons, Grenoble, 29-31 May 2008; to appear in Nucl. Instrum. Meth. in Physics Research

    A Current Mode Detector Array for Gamma-Ray Asymmetry Measurements

    Full text link
    We have built a CsI(Tl) gamma-ray detector array for the NPDGamma experiment to search for a small parity-violating directional asymmetry in the angular distribution of 2.2 MeV gamma-rays from the capture of polarized cold neutrons by protons with a sensitivity of several ppb. The weak pion-nucleon coupling constant can be determined from this asymmetry. The small size of the asymmetry requires a high cold neutron flux, control of systematic errors at the ppb level, and the use of current mode gamma-ray detection with vacuum photo diodes and low-noise solid-state preamplifiers. The average detector photoelectron yield was determined to be 1300 photoelectrons per MeV. The RMS width seen in the measurement is therefore dominated by the fluctuations in the number of gamma rays absorbed in the detector (counting statistics) rather than the intrinsic detector noise. The detectors were tested for noise performance, sensitivity to magnetic fields, pedestal stability and cosmic background. False asymmetries due to gain changes and electronic pickup in the detector system were measured to be consistent with zero to an accuracy of 10−910^{-9} in a few hours. We report on the design, operating criteria, and the results of measurements performed to test the detector array.Comment: 33 pages, 20 figures, 2 table
    • 

    corecore