503 research outputs found

    Microcomputer Intelligence for Technical Training (MITT): The evolution of an intelligent tutoring system

    Get PDF
    Microcomputer Intelligence for Technical Training (MITT) uses Intelligent Tutoring System (OTS) technology to deliver diagnostic training in a variety of complex technical domains. Over the past six years, MITT technology has been used to develop training systems for nuclear power plant diesel generator diagnosis, Space Shuttle fuel cell diagnosis, and message processing diagnosis for the Minuteman missile. Presented here is an overview of the MITT system, describing the evolution of the MITT software and the benefits of using the MITT system

    MITT writer and MITT writer advanced development: Developing authoring and training systems for complex technical domains

    Get PDF
    MITT Writer is a software system for developing computer based training for complex technical domains. A training system produced by MITT Writer allows a student to learn and practice troubleshooting and diagnostic skills. The MITT (Microcomputer Intelligence for Technical Training) architecture is a reasonable approach to simulation based diagnostic training. MITT delivers training on available computing equipment, delivers challenging training and simulation scenarios, and has economical development and maintenance costs. A 15 month effort was undertaken in which the MITT Writer system was developed. A workshop was also conducted to train instructors in how to use MITT Writer. Earlier versions were used to develop an Intelligent Tutoring System for troubleshooting the Minuteman Missile Message Processing System

    Advanced Technology Training System on Motor-Operated Valves

    Get PDF
    This paper describes how features from the field of Intelligent Tutoring Systems are applied to the Motor-Operated Valve (MOV) Advanced Technology Training System (ATTS). The MOV ATTS is a training system developed at Galaxy Scientific Corporation for the Central Research Institute of Electric Power Industry in Japan and the Electric Power Research Institute in the United States. The MOV ATTS combines traditional computer-based training approaches with system simulation, integrated expert systems, and student and expert modeling. The primary goal of the MOV ATTS is to reduce human errors that occur during MOV overhaul and repair. The MOV ATTS addresses this goal by providing basic operational information of the MOV, simulating MOV operation, providing troubleshooting practice of MOV failures, and tailoring this training to the needs of each individual student. The MOV ATTS integrates multiple expert models (functional and procedural) to provide advice and feedback to students. The integration also provides expert model validation support to developers. Student modeling is supported by two separate student models: one model registers and updates the student's current knowledge of basic MOV information, while another model logs the student's actions and errors during troubleshooting exercises. These two models are used to provide tailored feedback to the student during the MOV course

    Excision of formamidopyrimidine lesions by endonucleases III and VIII is not a major DNA repair pathway in Escherichia coli

    Get PDF
    Proper maintenance of the genome is of great importance. Consequently, damaged nucleotides are repaired through redundant pathways. We considered whether the genome is protected from formamidopyrimidine nucleosides (Fapy•dA, Fapy•dG) via a pathway distinct from the Escherichia coli guanine oxidation system. The formamidopyrimidines are produced in significant quantities in DNA as a result of oxidative stress and are efficiently excised by formamidopyrimidine DNA glycosylase. Previous reports suggest that the formamidopyrimidine nucleosides are substrates for endonucleases III and VIII, enzymes that are typically associated with pyrimidine lesion repair in E.coli. We investigated the possibility that Endo III and/or Endo VIII play a role in formamidopyrimidine nucleoside repair by examining Fapy•dA and Fapy•dG excision opposite all four native 2′-deoxyribonucleotides. Endo VIII excises both lesions more efficiently than does Endo III, but the enzymes exhibit similar selectivity with respect to their action on duplexes containing the formamidopyrimidines opposite native deoxyribonucleotides. Fapy•dA is removed more rapidly than Fapy•dG, and duplexes containing purine nucleotides opposite the lesions are superior substrates compared with those containing formamidopyrimidine–pyrimidine base pairs. This dependence upon opposing nucleotide indicates that Endo III and Endo VIII do not serve as back up enzymes to formamidopyrimidine DNA glycosylase in the repair of formamidopyrimidines. When considered in conjunction with cellular studies [J. O. Blaisdell, Z. Hatahet and S. S. Wallace (1999) J. Bacteriol., 181, 6396–6402], these results also suggest that Endo III and Endo VIII do not protect E.coli against possible mutations attributable to formamidopyrimidine lesions

    Sarcoidosis of the hypothalamus and pituitary stalk

    Get PDF
    We report a rare case of sarcoidosis of the hypothalamic and suprasellar region, with clinical course and the magnetic resonance imaging follow-up

    Technology-Enhanced Reading Therapy for People With Aphasia: Findings From a Quasirandomized Waitlist Controlled Study.

    Get PDF
    Purpose This study investigated the effects of technology-enhanced reading therapy for people with reading impairments, using mainstream assistive reading technologies alongside reading strategies. Method The study used a quasirandomized waitlist controlled design. Twenty-one people with reading impairments following stroke were randomly assigned to receive 14 hr of therapy immediately or after a 6-week delay. During therapy, participants were trained to use assistive reading technology that offered a range of features to support reading comprehension. They developed skills in using the technology independently and in applying the technology to their personal reading goals. The primary outcome measure assessed reading comprehension, using Gray Oral Reading Test-Fourth Edition (GORT-4). Secondary measures were as follows: Reading Comprehension Battery for Aphasia-Second Edition, Reading Confidence and Emotions Questionnaire, Communication Activities of Daily Living-Second Edition, Visual Analog Mood Scales, and Assessment of Living With Aphasia. Matched texts were used with the GORT-4 to compare technology-assisted and unassisted reading comprehension. Mixed analyses of variance explored change between T1 and T2, when the immediate group had received therapy but the delayed group had not, thus serving as untreated controls. Pretherapy, posttherapy, and follow-up scores on the measures were also examined for all participants. Results GORT-4 results indicated that the immediately treated group improved significantly in technology-assisted reading following therapy, but not in unassisted reading. However, the data were not normally distributed, and secondary nonparametric analysis was not significant. The control group was unstable over the baseline, improving significantly in unassisted reading. The whole-group analysis showed significant gains in assisted (but not unassisted) reading after therapy that were maintained at follow-up. The Reading Confidence and Emotions Questionnaire results improved significantly following therapy, with good maintenance of change. Results on all other secondary measures were not significant. Conclusions Technology-assisted reading comprehension improved following the intervention, with treatment compensating for, rather than remediating, the reading impairment. Participants' confidence and emotions associated with reading also improved. Gains were achieved after 14 therapy sessions, using assistive technologies that are widely available and relatively affordable, meaning that this approach could be implemented in clinical practice

    Effects of guanidine on synaptic transmission in the spinal cord of the frog

    Get PDF
    The effects of guanidine on motoneurons of the isolated frog spinal cord were studied by adding the drug to the solution bathing the cord during intracellular recording. Guanidine (5·10–4 M) did not alter the membrane potential of motoneurons. The main effect was a marked increase of the amplitudes and frequencies of small spontaneously occurring inhibitory postsynaptic potentials. The hyperpolarizing component of postsynaptic potentials evoked by stimulation of dorsal roots was also enhanced by guanidine. Higher concentrations of guanidine (5·10–3 M) resulted in a very large and irreversible increase of the small spontaneously occurring inhibitory potentials, which now appeared in a regular, rhythmic pattern. The effects of guanidine could easily be blocked by increasing the magnesium ions (15 mM) in the bath solution. These results indicate that guanidine facilitates the release of an inhibitory transmitter in afferent terminals of the frog spinal cord either by a direct action on these terminals or indirectly by an action on nerve endings impinging on inhibitory interneurons
    corecore