64 research outputs found

    Yellow Fever Virus Vaccine–associated Deaths in Young Women1

    Get PDF
    Yellow fever vaccine–associated viscerotropic disease is a rare sequela of live-attenuated virus vaccine. Elderly persons and persons who have had thymectomies have increased susceptibility. A review of published and other data suggested a higher than expected number of deaths from yellow fever vaccine–associated viscerotropic disease among women 19–34 years of age without known immunodeficiency

    What do aquaporin knockout studies tell us about fluid transport in epithelia?

    Get PDF
    The investigation of near-isosmotic water transport in epithelia goes back over 100 years; however, debates over mechanism and pathway remain. Aquaporin (AQP) knockouts have been used by various research groups to test the hypothesis of an osmotic mechanism as well as to explore the paracellular versus transcellular pathway debate. Nonproportional reductions in the water permeability of a water-transporting epithelial cell (e.g., a reduction of around 80–90 %) compared to the reduction in overall water transport rate in the knockout animal (e.g., a reduction of 50–60 %) are commonly found. This nonproportionality has led to controversy over whether AQP knockout studies support or contradict the osmotic mechanism. Arguments raised for and against an interpretation supporting the osmotic mechanism typically have partially specified, implicit, or incorrect assumptions. We present a simple mathematical model of the osmotic mechanism with clear assumptions and, for models based on this mechanism, establish a baseline prediction of AQP knockout studies. We allow for deviations from isotonic/isosmotic conditions and utilize dimensional analysis to reduce the number of parameters that must be considered independently. This enables a single prediction curve to be used for multiple epithelial systems. We find that a simple, transcellular-only osmotic mechanism sufficiently predicts the results of knockout studies and find criticisms of this mechanism to be overstated. We note, however, that AQP knockout studies do not give sufficient information to definitively rule out an additional paracellular pathway

    Metabolic Programming during Lactation Stimulates Renal Na+ Transport in the Adult Offspring Due to an Early Impact on Local Angiotensin II Pathways

    Get PDF
    BACKGROUND: Several studies have correlated perinatal malnutrition with diseases in adulthood, giving support to the programming hypothesis. In this study, the effects of maternal undernutrition during lactation on renal Na(+)-transporters and on the local angiotensin II (Ang II) signaling cascade in rats were investigated. METHODOLOGY/PRINCIPAL FINDINGS: Female rats received a hypoproteic diet (8% protein) throughout lactation. Control and programmed offspring consumed a diet containing 20% protein after weaning. Programming caused a decrease in the number of nephrons (35%), in the area of the Bowman's capsule (30%) and the capillary tuft (30%), and increased collagen deposition in the cortex and medulla (by 175% and 700%, respectively). In programmed rats the expression of (Na(+)+K(+))ATPase in proximal tubules increased by 40%, but its activity was doubled owing to a threefold increase in affinity for K(+). Programming doubled the ouabain-insensitive Na(+)-ATPase activity with loss of its physiological response to Ang II, increased the expression of AT(1) and decreased the expression of AT(2) receptors), and caused a pronounced inhibition (90%) of protein kinase C activity with decrease in the expression of the α (24%) and ε (13%) isoforms. Activity and expression of cyclic AMP-dependent protein kinase decreased in the same proportion as the AT(2) receptors (30%). In vivo studies at 60 days revealed an increased glomerular filtration rate (GFR) (70%), increased Na(+) excretion (80%) and intense proteinuria (increase of 400% in protein excretion). Programmed rats, which had normal arterial pressure at 60 days, became hypertensive by 150 days. CONCLUSIONS/SIGNIFICANCE: Maternal protein restriction during lactation results in alterations in GFR, renal Na(+) handling and in components of the Ang II-linked regulatory pathway of renal Na(+) reabsorption. At the molecular level, they provide a framework for understanding how metabolic programming of renal mechanisms contributes to the onset of hypertension in adulthood

    Increases in internal Ca2+ and decreases in internal H+ are induced by general anesthetics in squid axons.

    Get PDF
    Squid axons were injected with arsenazo III and treated with sea water containing compounds usually classified as general anesthetics, (pentanol-decanol and a variety of hydrocarbons and their derivatives). Such treatment led to an increase in absorbance by arsenazo III at wavelengths sensitive to [Ca]i. The effect was independent of the presence or absence of Ca++ in sea water and it was not modified by substances that release Ca from internal stores. The effect was easily reversible. In axons injected with phenol red or impaled with a glass electrode sensitive to H+, a similar treatment led to an alkalinization that was also readily reversible. Both Ca release and the change to an alkaline pH had identical time courses. The dose required for action by all of the chemical agents studied could be predicted from a knowledge of their fractional saturation in sea water, i.e. from their thermodynamic activity. For compounds with 8-10 carbon atoms, Ca-release effects can occur at concentration less than those necessary to block either conduction or Na/Ca exchange. A special chemical agent was octylamine, which induced a marked rise in pHi and in addition its nonionic form produced the typical Ca release associated with general anesthetics

    Ca2+ entry in squid axons during voltage-clamp pulses is mainly Na+/Ca2+ exchange.

    No full text

    Some aspects of proximal tubular sodium chloride reabsorption in Necturus kidney

    Get PDF
    Some aspects of proximal tubular sodium chloride reabsorption in Necturus kidney. Renal tubular reabsorption of fluid and sodium was measured by clearance methods in the doubly perfused Necturus kidney in which the bicarbonate concentration was varied between 0 and 60 mEq/liter. The effects of Damox (2.2 times 10-3M), ocubain (10-5M) and ethacrynic acid (10-4M) and of acidosis were also investigated. In addition to clearance experiments, stationary microperfusion experiments were carried out on promimal tubules to measure volume flow and steady-state sodium and chloride concentration differences across the tubular epithelium. In some experiments, the transepithelial electrical potential difference was also measured using an axial electrode system. The following results were obtained: 1) Bicarbonate is not essential to the operation of renal tubular fluid and sodium transport. 2) Total renal and proximal tubular fluid and sodium transport are partially inhibited by Diamox, ouabian and ethacrynic acid. 3) The proximal tubule maintains a significant transepithelial sodium and chloride concentration difference and a significant electrical potential difference (lumen-negative) in the presence of a poorly permeant nonelectrolyte. The direction and magnitude of the electrical polarization fully accounts for the observed chloride concentration difference. The data support the thesis that sodium chloride transport accross the proximal tubular epithelium takes place by active sodium transport and electically coupled passive chloride reabsorption. Important species differences with respect to mammalian transport mechanisms are discussed
    corecore