341 research outputs found

    Properties of grains derived from IRAS observations of dust

    Get PDF
    The authors used the results of Infrared Astronomy Satellite (IRAS) observations of diffuse medium dust to develop a theoretical model of the infrared properties of grains. Recent models based entirely on traditional observations of extinction and polarization include only particles whose equilibrium temperatures do not exceed 20 K in the diffuse interstellar medium. These classical grains, for which the authors have adopted the multipopulation model developed by Hong and Greenberg (1980), can explain only the emission in the IRAS 100 micron band. The measurements at shorter wavelengths (12, 25 and 60 microns) require two new particle populations. Vibrational fluorescence from aromatic molecules provides the most likely explanation for the emission observed at 12 microns, with polycyclic aeromatic hydrocarbons (PAHs) containing about 10 percent of cosmic carbon. A simplified model of the emission process shows that PAH molecules can also explain most of the emission measured by IRAS at 25 microns. The authors identified the warm particles responsible for the excess 60 microns emission with small (a approx. equals 0.01 microns) iron grains. A compilation of the available data on the optical properties of iron indicates that the diffuse medium temperature of small iron particles should be close to 50 K and implies that a large, possibly dominant, fraction of cosmic iron must be locked up in metallic particles in order to match the observed 60 microns intensities. The model matches the infrared fluxes typically observed by IRAS in the diffuse medium and can also reproduce the infrared surface brightness distribution in individual clouds. In particular, the combination of iron and classical cool grains can explain the surprising observations of the 60/100 microns flux ratio in clouds, which is either constant or increases slightly towards higher opacities. The presence of metallic grains has significant implications for the physics of the interstellar medium, including catalytic H2 formation, for which iron grains could be the main site; differences in depletion patterns between iron and other refractory elements (Mg, Si); and superparamagnetic behavior of large grains with embedded iron clusters giving rise to the observed high degree of alignment by the galactic magnetic field

    A multi-wavelength study of the peculiar galaxy NGC 2976

    Get PDF
    Researchers are currently studying NGC 2976 at many wavelengths to investigate the extent to which an interaction with M81 may have affected the star formation history of this galaxy. Here, researchers present observations of NGC 2976 made at 50 microns with the high resolution (CPC) instrument onboard Infrared Astronomy Satellite (IRAS) at 21-cm (both HI line and radio continuum) with the Westerbork Synthesis Radio Telescope (WSRT) and in the H alpha line with the Kitt Peak National Observatory (KPNO) 36 inch telescope. The far infrared emission is not centrally peaked as in other spirals (e.g., Wainscoat et al. 1987), but has obvious intensity peaks near the ends of the disk. The ionized gas as inferred from the H alpha observations, is largely confined to two large, symmetrically placed emission regions near the ends of the disk. Finally, the HI and 21-cm radio continuum emission also exhibit this strongly double-peaked structure. At all of the above wavelengths the emission peaks are roughly coincident and lie approx. 1.2 minutes to the NW and approx. 1.1 minutes to the SE of the optical center of this galaxy

    Dust emission from high latitude cirrus clouds

    Get PDF
    In order to study dust emission from grains in the interstellar medium, the infrared properties were analyzed in a number of isolated high latitude dust clouds which contain no dominant internal heating sources. The clouds are spatially resolved, have a simple geometry, and are mapped in the IRAS bands at 12, 25, 60, and 100 microns. For a number of these clouds, extinction data (A sub B) were obtained from starcounts. A large part (30 to 50 percent) of the infrared radiation of the clouds in the IRAS wavelength range of 8 to 130 micron is emitted in the short wavelength bands at 12 and 25 micron. The 60/100 micron ratios for the integrated fluxes of the clouds have a typical value of 0.19 + or - 0.05

    Infrared properties of dust grains derived from IRAS observations

    Get PDF
    The analysis of several diffuse interstellar clouds observed by the Infrared Astronomy Satellite (IRAS) is presented. The 60/100 micron flux ratios appear to be nearly constant in clouds with up to 1 sup m visual extinction at the center. Observations of a highly regular cloud in Chamaeleon show that the 12/100 micron ratio peaks at an intermediate radial distance and declines towards the center of the cloud. These observations indicate that nonequilibrium emission accounts only for the 12 and 25 micron bands; strong emission observed at the 60 micron band is probably due to equilibrium thermal radiation. The correlation of the 12 micron emission with a red excess observed for a high latitude cloud, L1780, is shown to be consistent with the assumption that both features are due to fluorescence by the same molecular species

    ISO spectroscopy of circumstellar dust in the Herbig Ae systems AB Aur and HD 163296

    Get PDF
    Using both the Short- and Long-wavelength Spectrometers on board the Infrared Space Observatory (ISO), we have obtained infrared spectra of the Herbig Ae systems AB Aur and HD 163296. In addition, we obtained ground-based N band images of HD 163296. Our results can be summarized as follows: (1) The main dust components in AB Aur are amorphous silicates, iron oxide and PAHs; (2) The circumstellar dust in HD 163296 consists of amorphous silicates, iron oxide, water ice and a small fraction of crystalline silicates; (3) The infrared fluxes of HD 163296 are dominated by solid state features; (4) The colour temperature of the underlying continuum is much cooler in HD 163296 than in AB Aur, pointing to the existence of a population of very large (mm sized) dust grains in HD 163296; (5) The composition and degree of crystallization of circumstellar dust are poorly correlated with the age of the central star. The processes of crystallization and grain growth are also not necessarily coupled. This means that either the evolution of circumstellar dust in protoplanetary disks happens very rapidly (within a few Myr), or that this evolution is governed by factors other than stellar mass and age.Comment: 6 pages, 2 figures, accepted for publication in Astronomy & Astrophysic

    The ISO-SWS spectrum of planetary nebula NGC 7027

    Get PDF
    We present the infrared spectrum of the planetary nebula NGC7027 observed with the Short Wavelength Spectrometer (SWS), on board the Infrared Space Observatory (ISO). These data allow us to derive the electron density and, together with the IUE and optical spectra, the electron temperature for several ions. The nebular composition has: been determined, the evolutionary status of the central star is discussed and the element depletion in the nebula is given. We conclude that the progenitor was: a C-rich star with a mass: between 3 and 4 M-circle dot

    Green schoolyards as outdoor learning environments:Barriers and solutions as experienced by primary school teachers

    Get PDF
    With a growing number of primary schools around the globe greening their schoolyards, opportunities arise to realize outdoor learning in natural areas on the school’s premises. Despite their promising potential, green schoolyards as outdoor learning environments remain mostly unintegrated in teachers’ educational practices. In the current study, teachers of five primary schools in Netherlands were followed for two consecutive years during a participatory action research project. Based on their experiences in this project, teachers identified barriers when integrating the green schoolyard as a learning environment and found practice-based solutions to overcome these barriers. Across schools, a total of 20 meetings were organized, with 75 teachers participating in the project. Results revealed four broad themes encompassing barriers and solutions. Teachers feel hindered by outdoor learning having no formal status in their current educational practice, experience barriers related to a lack of confidence in their own outdoor teaching expertise, find it difficult to get started, and experience barriers related to physical constraints. Teachers, professionals, and researchers together found solutions to overcome each specific barrier. These solutions can be translated to general recommendations: just do it, get educated and inspired, engage in real-life experiences, get an outdoor pedagogical mindset, and follow a tailored process. The findings can be used by primary schools and other institutions to develop interventions that support teachers to further integrate the green schoolyard as a learning environment

    On infrastructure for facilitation of inner source in small development teams

    Get PDF
    The phenomenon of adopting open source software development practices in a corporate environment is known by many names, one being inner source. The objective of this study is to investigate how an organization consisting of small development teams can benet from adopting inner source and assess the level of applicability. The research has been conducted as a case study at a software development company. Data collection was carried out through interviews and a series of focus group meetings, and then analyzed by mapping it to an available framework. The analysis shows that the organization possesses potential, and also identied a number of challenges and benets of special importance to the case company. To address these challenges, the case study synthesized the organizational and infrastructural needs of the organization in a requirements specication describing a technical infrastructure, also known as a software forge, with an adapted organizational context and work process

    ISO observations toward the reflection nebula NGC 7023: A nonequilibrium ortho- to para-H2 ratio

    Full text link
    We have observed the S(0), S(1), S(2), S(3), S(4) and S(5) rotational lines of molecular hydrogen (H2) towards the peak of the photodissociation region (PDR) associated with the reflection nebula NGC 7023. The observed H2 line ratios show that they arise in warm gas with kinetic temperatures ~300 - 700 K. However, the data cannot be fitted by an ortho- to para- (OTP) ratio of 3. An OTP ratio in the range ~1.5 - 2 is necessary to explain our observations. This is the first detection of a non-equilibrium OTP ratio measured from the H2 pure-rotational lines in a PDR. The existence of a dynamical PDR is discussed as the most likely explanation for this low OTP ratio.Comment: 4 pages, 3 figure

    Probing AGB nucleosynthesis via accurate Planetary Nebula abundances

    Get PDF
    The elemental abundances of ten planetary nebulae, derived with high accuracy including ISO and IUE spectra, are analysed with the aid of synthetic evolutionary models for the TP-AGB phase. Model prescriptions are varied until we achieve the simultaneous reproduction of all elemental features, which allows placing important constraints on the characteristic masses and nucleosynthetic processes experienced by the stellar progenitors. First of all, it is possible to separate the sample into two groups of PNe, one indicating the occurrence of only the third dredge-up during the TP-AGB phase, and the other showing also the chemical signature of hot-bottom burning. The former group is reproduced by stellar models with variable molecular opacities (see Marigo 2002), adopting initial solar metallicity, and typical efficiency of the third dredge-up 0.3-0.4. The latter group of PNe, with extremely high He content 0.15<=He/H<=0.20 and marked oxygen deficiency, is consistent with original sub-solar metallicity (i.e. LMC composition). Moreover, we are able to explain quantitatively both the N/H-He/H correlation and the N/H-C/H anti-correlation, thus solving the discrepancy pointed out long ago by Becker & Iben (1980). This is obtained only under the hypothesis that intermediate-mass TP-AGB progenitors (M > 4.5-5.0 Mo) with LMC composition have suffered a number of very efficient, carbon-poor, dredge-up events. Finally, the neon abundances of the He-rich PNe can be recovered by invoking a significant production of 22Ne during thermal pulses, which would imply a reduced role of the 22Ne(alpha,n)25Mg reaction as neutron source to the s-process nucleosynthesis in these stars.Comment: 22 pages, accepted for publication in Astronomy & Astrophysic
    • …
    corecore