4,442 research outputs found

    Avian Diversity, Abundance, and Nest Success among Managed Prairies and Agricultural Plots in Oklahoma and Texas

    Get PDF
    Over the last 50 years, grassland birds experienced rapid declines due to habitat loss and degradation as a result of agricultural practices. Our objective was to document the diversity, abundance, and nest success of bird communities using managed prairie and agricultural plots at the Tishomingo National Wildlife Refuge (NWR) in southern Oklahoma and Hagerman NWR in northern Texas. From April 1 to July 15, 2013–2014, point count surveys, nest searches, nest monitoring, and vegetation sampling were conducted among three habitat treatments: managed prairie, unharvested wheat, and fallow agricultural plots. Species richness values for potential nesting species were higher in managed prairies at both refuges, whereas species abundance rates varied among treatments. Nest success rates were low at both refuges due to nest abandonment and predators. Due to vegetation diversity, species were more likely to nest in managed prairies compared to agricultural plots with more homogenous vegetation at both refuges. Managed prairies at both refuges were relatively small and fragmented resulting in edge effects, such as increased nest predation and brood parasitism. We recommend increasing the area of managed prairies to provide more habitat for bird species at both refuges

    Contribution of Drosophila DEG/ENaC Genes to Salt Taste

    Get PDF
    AbstractThe ability to detect salt is critical for the survival of terrestrial animals. Based on amiloride-dependent inhibition, the receptors that detect salt have been postulated to be DEG/ENaC channels. We found the Drosophila DEG/ENaC genes Pickpocket11 (ppk11) and Pickpocket19 (ppk19) expressed in the larval taste-sensing terminal organ and in adults on the taste bristles of the labelum, the legs, and the wing margins. When we disrupted PPK11 or PPK19 function, larvae lost their ability to discriminate low concentrations of Na+ or K+ from water, and the electrophysiologic responses to low salt concentrations were attenuated. In both larvae and adults, disrupting PPK11 or PPK19 affected the behavioral response to high salt concentrations. In contrast, the response of larvae to sucrose, pH 3, and several odors remained intact. These results indicate that the DEG/ENaC channels PPK11 and PPK19 play a key role in detecting Na+ and K+ salts

    Wave attenuation at a salt marsh margin: A case study of an exposed coast on the Yangtze estuary

    Get PDF
    To quantify wave attenuation by (introduced) Spartina alterniflora vegetation at an exposed macrotidal coast in the Yangtze Estuary, China, wave parameters and water depth were measured during 13 consecutive tides at nine locations ranging from 10 m seaward to 50 m landward of the low marsh edge. During this period, the incident wave height ranged from <0.1 to 1.5 m, the maximum of which is much higher than observed in other marsh areas around the world. Our measurements and calculations showed that the wave attenuation rate per unit distance was 1 to 2 magnitudes higher over the marsh than over an adjacent mudflat. Although the elevation gradient of the marsh margin was significantly higher than that of the adjacent mudflat, more than 80% of wave attenuation was ascribed to the presence of vegetation, suggesting that shoaling effects were of minor importance. On average, waves reaching the marsh were eliminated over a distance of similar to 80 m, although a marsh distance of >= 100 m was needed before the maximum height waves were fully attenuated during high tides. These attenuation distances were longer than those previously found in American salt marshes, mainly due to the macrotidal and exposed conditions at the present site. The ratio of water depth to plant height showed an inverse correlation with wave attenuation rate, indicating that plant height is a crucial factor determining the efficiency of wave attenuation. Consequently, the tall shoots of the introduced S. alterniflora makes this species much more efficient at attenuating waves than the shorter, native pioneer species in the Yangtze Estuary, and should therefore be considered as a factor in coastal management during the present era of sea-level rise and global change. We also found that wave attenuation across the salt marsh can be predicted using published models when a suitable coefficient is incorporated to account for drag, which varies in place and time due to differences in plant characteristics and abiotic conditions (i.e., bed gradient, initial water depth, and wave action).

    A quantitative structure- property relationship of gas chromatographic/mass spectrometric retention data of 85 volatile organic compounds as air pollutant materials by multivariate methods

    Get PDF
    A quantitative structure-property relationship (QSPR) study is suggested for the prediction of retention times of volatile organic compounds. Various kinds of molecular descriptors were calculated to represent the molecular structure of compounds. Modeling of retention times of these compounds as a function of the theoretically derived descriptors was established by multiple linear regression (MLR) and artificial neural network (ANN). The stepwise regression was used for the selection of the variables which gives the best-fitted models. After variable selection ANN, MLR methods were used with leave-one-out cross validation for building the regression models. The prediction results are in very good agreement with the experimental values. MLR as the linear regression method shows good ability in the prediction of the retention times of the prediction set. This provided a new and effective method for predicting the chromatography retention index for the volatile organic compounds

    Vascularized tissue‐engineered chambers promote survival and function of transplanted islets and improve glycemic control

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154402/1/fsb2fj054879fje.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154402/2/fsb2fj054879fje-sup-0001.pd

    Impact of facial conformation on canine health: Brachycephalic Obstructive Airway Syndrome

    Get PDF
    The domestic dog may be the most morphologically diverse terrestrial mammalian species known to man; pedigree dogs are artificially selected for extreme aesthetics dictated by formal Breed Standards, and breed-related disorders linked to conformation are ubiquitous and diverse. Brachycephaly–foreshortening of the facial skeleton–is a discrete mutation that has been selected for in many popular dog breeds e.g. the Bulldog, Pug, and French Bulldog. A chronic, debilitating respiratory syndrome, whereby soft tissue blocks the airways, predominantly affects dogs with this conformation, and thus is labelled Brachycephalic Obstructive Airway Syndrome (BOAS). Despite the name of the syndrome, scientific evidence quantitatively linking brachycephaly with BOAS is lacking, but it could aid efforts to select for healthier conformations. Here we show, in (1) an exploratory study of 700 dogs of diverse breeds and conformations, and (2) a confirmatory study of 154 brachycephalic dogs, that BOAS risk increases sharply in a non-linear manner as relative muzzle length shortens. BOAS only occurred in dogs whose muzzles comprised less than half their cranial lengths. Thicker neck girths also increased BOAS risk in both populations: a risk factor for human sleep apnoea and not previously realised in dogs; and obesity was found to further increase BOAS risk. This study provides evidence that breeding for brachycephaly leads to an increased risk of BOAS in dogs, with risk increasing as the morphology becomes more exaggerated. As such, dog breeders and buyers should be aware of this risk when selecting dogs, and breeding organisations should actively discourage exaggeration of this high-risk conformation in breed standards and the show ring

    Physics Laws of Social Science

    Get PDF
    Economics, and other fields of social science are often criticized as unscientific for their apparent failures to formulate universal laws governing human societies. Whether economics is truly a science is one of the oldest questions. This paper attempts to create such universal laws, and asserts that economics is a branch of quantum physics just like chemistry. Choice is a central concept in economics and other fields of social science, yet there is no corresponding concept of choice in modern physics. This article suggests that by introducing the concept of choice to the existing framework of physics, one can formulate five new physics laws, which establishes a common physics foundation for all fields of social and natural science. Applications in economics, biology, history, and finance prove that these new laws remove the invisible wall, which has been artificially separating social science from natural science. One implication of this article is that to establish a sound scientific foundation for social science requires not only advances in psychology and neurobiology but also a new interpretation of quantum mechanics
    corecore