68 research outputs found

    A low density of 0.8 g/cc for the Trojan binary asteroid 617 Patroclus

    Full text link
    The Trojan population consists of two swarms of asteroids following the same orbit as Jupiter and located at the L4 and L5 Lagrange points of the Jupiter-Sun system (leading and following Jupiter by 60 degrees). The asteroid 617 Patroclus is the only known binary Trojan (Merline et al. 2001). The orbit of this double system was hitherto unknown. Here we report that the components, separated by 680 km, move around the system centre of mass, describing roughly a circular orbit. Using the orbital parameters, combined with thermal measurements to estimate the size of the components, we derive a very low density of 0.8 g/cc. The components of Patroclus are therefore very porous or composed mostly of water ice, suggesting that they could have been formed in the outer part of the solar system.Comment: 10 pages, 3 figures, 1 tabl

    Hidden Orbital Order in URu2Si2URu_{2}Si_{2}

    Full text link
    When matter is cooled from high temperatures, collective instabilities develop amongst its constituent particles that lead to new kinds of order. An anomaly in the specific heat is a classic signature of this phenomenon. Usually the associated order is easily identified, but sometimes its nature remains elusive. The heavy fermion metal URu2Si2URu_2Si_2 is one such example, where the order responsible for the sharp specific heat anomaly at T0=17KT_0=17 K has remained unidentified despite more than seventeen years of effort. In URu2Si2URu_{2}Si_{2}, the coexistence of large electron-electron repulsion and antiferromagnetic fluctuations in URu2Si2URu_2Si_2 leads to an almost incompressible heavy electron fluid, where anisotropically paired quasiparticle states are energetically favored. In this paper we use these insights to develop a detailed proposal for the hidden order in URu2Si2URu_2Si_2. We show that incommensurate orbital antiferromagnetism, associated with circulating currents between the uranium ions, can account for the local fields and entropy loss observed at the 17K17 K transition; furthermore we make detailed predictions for neutron scattering measurements

    Modeling the Evolution of Regulatory Elements by Simultaneous Detection and Alignment with Phylogenetic Pair HMMs

    Get PDF
    The computational detection of regulatory elements in DNA is a difficult but important problem impacting our progress in understanding the complex nature of eukaryotic gene regulation. Attempts to utilize cross-species conservation for this task have been hampered both by evolutionary changes of functional sites and poor performance of general-purpose alignment programs when applied to non-coding sequence. We describe a new and flexible framework for modeling binding site evolution in multiple related genomes, based on phylogenetic pair hidden Markov models which explicitly model the gain and loss of binding sites along a phylogeny. We demonstrate the value of this framework for both the alignment of regulatory regions and the inference of precise binding-site locations within those regions. As the underlying formalism is a stochastic, generative model, it can also be used to simulate the evolution of regulatory elements. Our implementation is scalable in terms of numbers of species and sequence lengths and can produce alignments and binding-site predictions with accuracy rivaling or exceeding current systems that specialize in only alignment or only binding-site prediction. We demonstrate the validity and power of various model components on extensive simulations of realistic sequence data and apply a specific model to study Drosophila enhancers in as many as ten related genomes and in the presence of gain and loss of binding sites. Different models and modeling assumptions can be easily specified, thus providing an invaluable tool for the exploration of biological hypotheses that can drive improvements in our understanding of the mechanisms and evolution of gene regulation

    Measuring the functional sequence complexity of proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Abel and Trevors have delineated three aspects of sequence complexity, Random Sequence Complexity (RSC), Ordered Sequence Complexity (OSC) and Functional Sequence Complexity (FSC) observed in biosequences such as proteins. In this paper, we provide a method to measure functional sequence complexity.</p> <p>Methods and Results</p> <p>We have extended Shannon uncertainty by incorporating the data variable with a functionality variable. The resulting measured unit, which we call Functional bit (Fit), is calculated from the sequence data jointly with the defined functionality variable. To demonstrate the relevance to functional bioinformatics, a method to measure functional sequence complexity was developed and applied to 35 protein families. Considerations were made in determining how the measure can be used to correlate functionality when relating to the whole molecule and sub-molecule. In the experiment, we show that when the proposed measure is applied to the aligned protein sequences of ubiquitin, 6 of the 7 highest value sites correlate with the binding domain.</p> <p>Conclusion</p> <p>For future extensions, measures of functional bioinformatics may provide a means to evaluate potential evolving pathways from effects such as mutations, as well as analyzing the internal structural and functional relationships within the 3-D structure of proteins.</p

    Changing pattern of the detection of locoregional relapse in breast cancer: the Edinburgh experience

    Get PDF
    The guidelines for follow-up of breast cancer patients concentrate on the first 3–5 years, with either reduced frequency of visits or discharge after this. They also recommend mammography, but no evidence exists to inform frequency. We analyse treatable relapses in our unit from 1312 patients with early stage breast cancer treated by breast conserving surgery (BCS) and postoperative radiotherapy between 1991 and 1998 to assess appropriateness of the guidelines. A total of 110 treatable relapses were analysed. Treatable relapse developed at 1–1.5% per year throughout follow-up. Forty-eight relapses were in ipsilateral breast, 25 ipsilateral axilla, 35 contralateral breast, 2 both breasts simultaneously. Thirty-seven relapses (33.5%) were symptomatic, 56 (51%) mammographically detected, 15 (13.5%) clinically detected, 2 (2%) diagnosed incidentally. Mammography detected 5.37 relapses per 1000 mammograms. Patients with symptomatic or mammographically detected ipsilateral breast relapse had significantly longer survival from original diagnosis (P=0.0002) and from recurrence (P=0.0014) compared with clinically detected. Treatable relapse occurs at a constant rate for at least 10 years. Clinical examination detects a minority (13.5%). Relapse diagnosed clinically is associated with poorer outcome. Long-term follow-up based on regular mammography is warranted for all patients treated by BCS

    The importance of krill predation in the Southern Ocean

    Get PDF

    Evaluating the effects of population management on a herbivore grazing conflict

    Get PDF
    Abundant herbivores can damage plants and so cause conflict with conservation, agricultural, and fisheries interests. Management of herbivore populations is a potential tool to alleviate such conflicts but may raise concerns about the economic and ethical costs of implementation, especially if the herbivores are ‘charismatic’ and popular with the public. Thus it is critical to evaluate the probability of achieving the desired ecological outcomes before proceeding to a field trial. Here we assessed the potential for population control to resolve a conflict of non-breeding swans grazing in river catchments. We used a mathematical model to evaluate the consequences of three population management strategies; (a) reductions in reproductive success, (b) removal of individuals, and (c) reduced reproductive success and removal of individuals combined. This model gave accurate projections of historical changes in population size for the two rivers for which data were available. Our model projected that the River Frome swan population would increase by 54 %, from 257 to 397 individuals, over 17 years in the absence of population control. Removal of ≥ 60 % of non-breeding individuals each year was projected to reduce the catchment population below the level for which grazing conflicts have been previously reported. Reducing reproductive success, even to 0 eggs per nest, failed to achieve the population reduction required. High adult and juvenile survival probabilities (> 0.7) and immigration from outside of the catchment limited the effects of management on population size. Given the high, sustained effort required, population control does not represent an effective management option for preventing the grazing conflicts in river catchments. Our study highlights the need to evaluate the effects of different management techniques, both alone and in combination, prior to field trials. Population models, such as the one presented here, can provide a cost-effective and ethical means of such evaluations
    • …
    corecore