7,349 research outputs found

    Creep of plasma sprayed zirconia

    Get PDF
    Specimens of plasma-sprayed zirconia thermal barrier coatings with three different porosities and different initial particle sizes were deformed in compression at initial loads of 1000, 2000, and 3500 psi and temperatures of 1100 C, 1250 C, and 1400 C. The coatings were stabilized with lime, magnesia, and two different concentrations of yttria. Creep began as soon as the load was applied and continued at a constantly decreasing rate until the load was removed. Temperature and stabilization had a pronounced effect on creep rate. The creep rate for 20% Y2O3-80% ZrO2 was 1/3 to 1/2 that of 8% Y2O3-92% ZrO2. Both magnesia and calcia stabilized ZrO2 crept at a rate 5 to 10 times that of the 20% Y2O3 material. A near proportionality between creep rate and applied stress was observed. The rate controlling process appeared to be thermally activated, with an activation energy of approximately 100 cal/gm mole K. Creep deformation was due to cracking and particle sliding

    Method of preparing zinc orthotitanate pigment

    Get PDF
    Zinc orthotitanate suitable for use as a pigment for spacecraft thermal control coatings is prepared by heating a slightly zinc deficient reaction mixture of precipitated oxalates of zinc and titanium. The reaction mixture can be formed by coprecipitation of zinc and titanium oxalates from chloride solution or by mixing separately precipitated oxalates. The mixture is first heated to 400 to 600 C to remove volatiles and is then rapidly heated at 900 to 1200 C. Zinc orthotitanate produced by this method exhibits the very fine particle size needed for thermal control coatings as well as stability in a space environment

    The Subcolonization and Buildup of \u3ci\u3eTetrastichus Julis,\u3c/i\u3e (Hymenoptera: Eulophidae) a Larval Parasitoid of the Cereal Leaf Beetle, (Coleoptera: Chrysomelidae) in the Lower Peninsula of Michigan

    Get PDF
    Following initial establishment of the parasitoid, Tetrastichus julis (Walker), at a carefully managed field nursery, releases of parasitized Oulema melanopus larvae were made by Michigan county agents at preselected sites throughout the lower peninsula during 1970-74. A follow-up recovery program during 1971-75 revealed continued dispersion and population increase for T. julis. An independent census verified the increasing rates of parasitism

    GABAergic compensation in connexin36 knock-out mice evident during low-magnesium seizure-like event activity

    Get PDF
    Gap junctions within the cerebral cortex may facilitate cortical seizure formation by their ability to synchronize electrical activity. To investigate this, one option is to compare wild-type (WT) animals with those lacking the gene for connexin36 (Cx36 KO); the protein that forms neuronal gap junctions between cortical inhibitory cells. However, genetically modified knock-out animals may exhibit compensatory effects; with the risk that observed differences between WT and Cx36 KO animals could be erroneously attributed to Cx36 gap junction effects. In this study we investigated the effect of GABAA-receptor modulation (augmentation with 16 μM etomidate and blockade with 100 μM picrotoxin) on low-magnesium seizure-like events (SLEs) in mouse cortical slices. In WT slices, picrotoxin enhanced both the amplitude (49% increase, p = 0.0006) and frequency (37% increase, p = 0.005) of SLEs; etomidate also enhanced SLE amplitude (18% increase, p = 0.003) but reduced event frequency (25% decrease, p < 0.0001). In Cx36 KO slices, the frequency effects of etomidate and picrotoxin were preserved, but the amplitude responses were abolished. Pre-treatment with the gap junction blocker mefloquin in WT slices did not significantly alter the drug responses, indicating that the reduction in amplitude seen in the Cx36 KO mice was not primarily mediated by their lack of interneuronal gap junctions, but was rather due to pre-existing compensatory changes in these animals. Conclusions from studies comparing seizure characteristics between WT and Cx36 KO mice must be viewed with a degree of caution because of the possible confounding effect of compensatory neurophysiological changes in the genetically modified animals

    Notes on the life history of the Black rose chafer

    Get PDF

    Spectral properties of a narrow-band Anderson model

    Full text link
    We consider single-particle spectra of a symmetric narrow-band Anderson impurity model, where the host bandwidth DD is small compared to the hybridization strength Δ0\Delta_{0}. Simple 2nd order perturbation theory (2PT) in UU is found to produce a rich spectral structure, that leads to rather good agreement with extant Lanczos results and offers a transparent picture of the underlying physics. It also leads naturally to two distinct regimes of spectral behaviour, Δ0Z/D1\Delta_{0}Z/D\gg 1 and 1\ll 1 (with ZZ the quasi-particle weight), whose existence and essential characteristics are discussed and shown to be independent of 2PT itself. The self-energy Σiω\Sigma_{i\omega} is also examined beyond the confines of PT. It is argued that on frequency scales of order ωDelta0D\omega\sim\sqrt{Delta_{0}D}, the self-energy in {\em strong} coupling is given precisely by the 2PT result, and we point out that the resultant poles in Σiω\Sigma_{i\omega} connect continuously to that characteristic of the atomic limit. This in turn offers a natural rationale for the known inability of the skeleton expansion to capture such behaviour, and points to the intrinsic dangers of partial infinite-order summations that are based on PT in UU.Comment: 10 pages, 2 Postscript figures, uses RevTex 3.1; accepted for publication in Phys. Rev. B1

    Strain Modulated Electronic Properties of Ge Nanowires - A First Principles Study

    Full text link
    We used density-functional theory based first principles simulations to study the effects of uniaxial strain and quantum confinement on the electronic properties of germanium nanowires along the [110] direction, such as the energy gap and the effective masses of the electron and hole. The diameters of the nanowires being studied are up to 50 {\AA}. As shown in our calculations, the Ge [110] nanowires possess a direct band gap, in contrast to the nature of an indirect band gap in bulk. We discovered that the band gap and the effective masses of charge carries can be modulated by applying uniaxial strain to the nanowires. These strain modulations are size-dependent. For a smaller wire (~ 12 {\AA}), the band gap is almost a linear function of strain; compressive strain increases the gap while tensile strain reduces the gap. For a larger wire (20 {\AA} - 50 {\AA}), the variation of the band gap with respect to strain shows nearly parabolic behavior: compressive strain beyond -1% also reduces the gap. In addition, our studies showed that strain affects effective masses of the electron and hole very differently. The effective mass of the hole increases with a tensile strain while the effective mass of the electron increases with a compressive strain. Our results suggested both strain and size can be used to tune the band structures of nanowires, which may help in design of future nano-electronic devices. We also discussed our results by applying the tight-binding model.Comment: 1 table, 8 figure
    corecore