7,349 research outputs found
Creep of plasma sprayed zirconia
Specimens of plasma-sprayed zirconia thermal barrier coatings with three different porosities and different initial particle sizes were deformed in compression at initial loads of 1000, 2000, and 3500 psi and temperatures of 1100 C, 1250 C, and 1400 C. The coatings were stabilized with lime, magnesia, and two different concentrations of yttria. Creep began as soon as the load was applied and continued at a constantly decreasing rate until the load was removed. Temperature and stabilization had a pronounced effect on creep rate. The creep rate for 20% Y2O3-80% ZrO2 was 1/3 to 1/2 that of 8% Y2O3-92% ZrO2. Both magnesia and calcia stabilized ZrO2 crept at a rate 5 to 10 times that of the 20% Y2O3 material. A near proportionality between creep rate and applied stress was observed. The rate controlling process appeared to be thermally activated, with an activation energy of approximately 100 cal/gm mole K. Creep deformation was due to cracking and particle sliding
Method of preparing zinc orthotitanate pigment
Zinc orthotitanate suitable for use as a pigment for spacecraft thermal control coatings is prepared by heating a slightly zinc deficient reaction mixture of precipitated oxalates of zinc and titanium. The reaction mixture can be formed by coprecipitation of zinc and titanium oxalates from chloride solution or by mixing separately precipitated oxalates. The mixture is first heated to 400 to 600 C to remove volatiles and is then rapidly heated at 900 to 1200 C. Zinc orthotitanate produced by this method exhibits the very fine particle size needed for thermal control coatings as well as stability in a space environment
The Subcolonization and Buildup of \u3ci\u3eTetrastichus Julis,\u3c/i\u3e (Hymenoptera: Eulophidae) a Larval Parasitoid of the Cereal Leaf Beetle, (Coleoptera: Chrysomelidae) in the Lower Peninsula of Michigan
Following initial establishment of the parasitoid, Tetrastichus julis (Walker), at a carefully managed field nursery, releases of parasitized Oulema melanopus larvae were made by Michigan county agents at preselected sites throughout the lower peninsula during 1970-74. A follow-up recovery program during 1971-75 revealed continued dispersion and population increase for T. julis. An independent census verified the increasing rates of parasitism
GABAergic compensation in connexin36 knock-out mice evident during low-magnesium seizure-like event activity
Gap junctions within the cerebral cortex may facilitate cortical seizure formation by their ability to synchronize electrical activity. To investigate this, one option is to compare wild-type (WT) animals with those lacking the gene for connexin36 (Cx36 KO); the protein that forms neuronal gap junctions between cortical inhibitory cells. However, genetically modified knock-out animals may exhibit compensatory effects; with the risk that observed differences between WT and Cx36 KO animals could be erroneously attributed to Cx36 gap junction effects. In this study we investigated the effect of GABAA-receptor modulation (augmentation with 16 μM etomidate and blockade with 100 μM picrotoxin) on low-magnesium seizure-like events (SLEs) in mouse cortical slices. In WT slices, picrotoxin enhanced both the amplitude (49% increase, p = 0.0006) and frequency (37% increase, p = 0.005) of SLEs; etomidate also enhanced SLE amplitude (18% increase, p = 0.003) but reduced event frequency (25% decrease, p < 0.0001). In Cx36 KO slices, the frequency effects of etomidate and picrotoxin were preserved, but the amplitude responses were abolished. Pre-treatment with the gap junction blocker mefloquin in WT slices did not significantly alter the drug responses, indicating that the reduction in amplitude seen in the Cx36 KO mice was not primarily mediated by their lack of interneuronal gap junctions, but was rather due to pre-existing compensatory changes in these animals. Conclusions from studies comparing seizure characteristics between WT and Cx36 KO mice must be viewed with a degree of caution because of the possible confounding effect of compensatory neurophysiological changes in the genetically modified animals
Recommended from our members
Social learning is central to innovation, in primates and beyond
AbstractMuch of the importance of innovation stems from its capacity to spread via social learning, affecting multiple individuals, thus generating evolutionary and ecological consequences. We advocate a broader taxonomic focus in the field of behavioral innovation, as well as the use of comparative field research, and discuss the unique conservation implications of animal innovations and traditions.This is the author accepted manuscript. The final version is available from Cambridge University Press via http://dx.doi.org/10.1017/S0140525X0700247
Spectral properties of a narrow-band Anderson model
We consider single-particle spectra of a symmetric narrow-band Anderson
impurity model, where the host bandwidth is small compared to the
hybridization strength . Simple 2nd order perturbation theory (2PT)
in is found to produce a rich spectral structure, that leads to rather good
agreement with extant Lanczos results and offers a transparent picture of the
underlying physics. It also leads naturally to two distinct regimes of spectral
behaviour, and (with the quasi-particle
weight), whose existence and essential characteristics are discussed and shown
to be independent of 2PT itself. The self-energy is also
examined beyond the confines of PT. It is argued that on frequency scales of
order , the self-energy in {\em strong} coupling
is given precisely by the 2PT result, and we point out that the resultant poles
in connect continuously to that characteristic of the atomic
limit. This in turn offers a natural rationale for the known inability of the
skeleton expansion to capture such behaviour, and points to the intrinsic
dangers of partial infinite-order summations that are based on PT in .Comment: 10 pages, 2 Postscript figures, uses RevTex 3.1; accepted for
publication in Phys. Rev. B1
Strain Modulated Electronic Properties of Ge Nanowires - A First Principles Study
We used density-functional theory based first principles simulations to study
the effects of uniaxial strain and quantum confinement on the electronic
properties of germanium nanowires along the [110] direction, such as the energy
gap and the effective masses of the electron and hole. The diameters of the
nanowires being studied are up to 50 {\AA}. As shown in our calculations, the
Ge [110] nanowires possess a direct band gap, in contrast to the nature of an
indirect band gap in bulk. We discovered that the band gap and the effective
masses of charge carries can be modulated by applying uniaxial strain to the
nanowires. These strain modulations are size-dependent. For a smaller wire (~
12 {\AA}), the band gap is almost a linear function of strain; compressive
strain increases the gap while tensile strain reduces the gap. For a larger
wire (20 {\AA} - 50 {\AA}), the variation of the band gap with respect to
strain shows nearly parabolic behavior: compressive strain beyond -1% also
reduces the gap. In addition, our studies showed that strain affects effective
masses of the electron and hole very differently. The effective mass of the
hole increases with a tensile strain while the effective mass of the electron
increases with a compressive strain. Our results suggested both strain and size
can be used to tune the band structures of nanowires, which may help in design
of future nano-electronic devices. We also discussed our results by applying
the tight-binding model.Comment: 1 table, 8 figure
- …