789 research outputs found

    Flight test evaluation of a separate surface attitude command control system on a Beech 99 airplane

    Get PDF
    A joint NASA/university/industry program was conducted to flight evaluate a potentially low cost separate surface implementation of attitude command in a Beech 99 airplane. Saturation of the separate surfaces was the primary cause of many problems during development. Six experienced professional pilots who made simulated instrument flight evaluations experienced improvements in airplane handling qualities in the presence of turbulence and a reduction in pilot workload. For ride quality, quantitative data show that the attitude command control system results in all cases of airplane motion being removed from the uncomfortable ride region

    Dietery Response of Sympatric Deer to Fire Using Stable ISotope Analysis of Liver Tissue

    Get PDF
    Carbon (δ13C) and nitrogen (δ15N) isotopes in biological samples from large herbivores identify photosynthetic pathways (C3 vs. C4 ) of plants they consumed and can elucidate potential nutritional characteristics of dietary selection. Because large herbivores consume a diversity of forage types, δ13C and δ15N in their tissue can index ingested and assimilated diets through time. We assessed δ13C and δ15N in metabolically active liver tissue of sympatric mule deer (Odocoileus hemionus) and white-tailed deer (O. virginianus) to identify dietary disparity resulting from use of burned and unburned areas in a largely forested landscape. Interspecific variation in dietary disparity of deer was documented 2–3 years post-fire in response to lag-time effects of vegetative response to burning and seasonal (i.e., summer, winter) differences in forage type. Liver δ13C for mule deer were lower during winter and higher during summer 2 years post-fire on burned habitat compared to unburned habitat suggesting different forages were consumed by mule deer in response to fire. Liver δ15N for both species were higher on burned than unburned habitat during winter and summer suggesting deer consumed more nutritious forage on burned habitat during both seasons 2 and 3 years post-fire. Unlike traditional methods of dietary assessment that do not measure uptake of carbon and nitrogen from dietary components, analyses of stable isotopes in liver or similar tissue elucidated δ13C and δ15N assimilation from seasonal dietary components and resulting differences in the foraging ecology of sympatric species in response to fire

    Failure to detect infection by oral polio vaccine virus following natural exposure among inactivated polio vaccine recipients

    Get PDF
    While oral polio vaccine (OPV) has been shown to be safe and effective, it has been observed that it can circulate within a susceptible population and revert to a virulent form. Inactivated polio vaccine (IPV) confers protection from paralytic disease, but provides limited protection against infection. It is possible, then, that an IPV-immunized population, when exposed to OPV, could sustain undetected circulation of vaccine-derived poliovirus. This study examines the possibility of polio vaccine virus circulating within the United States (highly IPV-immunized) population that borders Mexico (OPV-immunized). A total of 653 stool and 20 sewage samples collected on the US side of the border were tested for the presence of poliovirus. All samples were found to be negative. These results suggest that the risk of circulating vaccine-derived poliovirus is low in fully immunized IPV-using populations in developed countries that border OPV-using populations

    About a Snail, a Toad, and Rodents: Animal Models for Adaptation Research

    Get PDF
    Neural adaptation mechanisms have many similarities throughout the animal kingdom, enabling to study fundamentals of human adaptation in selected animal models with experimental approaches that are impossible to apply in man. This will be illustrated by reviewing research on three of such animal models, viz. (1) the egg-laying behavior of a snail, Lymnaea stagnalis: how one neuron type controls behavior, (2) adaptation to the ambient light condition by a toad, Xenopus laevis: how a neuroendocrine cell integrates complex external and neural inputs, and (3) stress, feeding, and depression in rodents: how a neuronal network co-ordinates different but related complex behaviors. Special attention is being paid to the actions of neurochemical messengers, such as neuropeptide Y, urocortin 1, and brain-derived neurotrophic factor. While awaiting new technological developments to study the living human brain at the cellular and molecular levels, continuing progress in the insight in the functioning of human adaptation mechanisms may be expected from neuroendocrine research using invertebrate and vertebrate animal models

    Evolution of far-from-equilibrium nanostructures on Ag(100) surfaces: Protrusions and indentations at extended step edges

    Get PDF
    Scanning tunneling microscopy is used to monitor the formation and relaxation of nanoprotrusions and nanoindentations at extended step edges following submonolayer deposition of Ag on Ag(100). Deposition of up to about 1/4 ML Ag produces isolated two-dimensional (2D) Ag clusters, which subsequently diffuse, collide, and coalesce with extended step edges, thus forming protrusions. Deposition of larger submonolayer amounts of Ag causes existing step edges to advance across terraces, incorporating 2D islands. The resulting irregular step structure rapidly straightens after terminating deposition, except for a few larger indentations. Relaxation of these far-from-equilibrium step-edge nanoconfigurations is monitored to determine rates for restructuring versus local geometry and feature size. This behavior is analyzed utilizing kinetic Monte Carlo simulations of an atomistic lattice-gas model for relaxation of step-edge nanostructures. In this model, mass transport is mediated by diffusion along the step edge (i.e., “periphery diffusion”). The model consistently fits observed behavior, and allows a detailed characterization of the relaxation process, including assessment of key activation energies

    Adatom capture by arrays of two-dimensional Ag islands on Ag(100)

    Get PDF
    We examine the capture of diffusing Ag adatoms by arrays of two-dimensional Ag islands subsequent to deposition on Ag(100) at room temperature. This is achieved by a combination of scanning tunneling microscopy experiments, kinetic Monte Carlo simulations, and diffusion equation analyses. The dependence of the capture rates on Ag-island size is shown to reflect larger island-free regions surrounding the larger islands, i.e., a strong correlation between island sizes and separations. This feature, and the influence of the local environment of the islands on capture, are elucidated by introducing suitable tessellations of the surface into “capture zones” for each island. We show that a Voronoi-type tessellation based on the distance from the island edges accurately reflects adatom capture. However, a tessellation exactly describing adatom capture is only obtained from a solution of the steady-state equation describing adatom deposition, diffusion, and capture by an array of islands distributed as in experiment. The stochastic nature of adatom capture is also quantified by analysis of the dependence on the deposition location of the probability for diffusing adatoms to be captured by a specific island. The experimental island size dependence of adatom capture is found to be entirely consistent with that obtained from a “canonical” model for the irreversible nucleation and growth of square islands
    • …
    corecore