50 research outputs found
Influence of external magnetic fields on growth of alloy nanoclusters
Kinetic Monte Carlo simulations are performed to study the influence of
external magnetic fields on the growth of magnetic fcc binary alloy
nanoclusters with perpendicular magnetic anisotropy. The underlying kinetic
model is designed to describe essential structural and magnetic properties of
CoPt_3-type clusters grown on a weakly interacting substrate through molecular
beam epitaxy. The results suggest that perpendicular magnetic anisotropy can be
enhanced when the field is applied during growth. For equilibrium bulk systems
a significant shift of the onset temperature for L1_2 ordering is found, in
agreement with predictions from Landau theory. Stronger field induced effects
can be expected for magnetic fcc-alloys undergoing L1_0 ordering.Comment: 10 pages, 3 figure
New Insights into the Seasonal Variation of DOM Quality of a Humic-Rich Drinking-Water Reservoir—Coupling 2D-Fluorescence and FTICR MS Measurements
Long-term changes in dissolved organic matter (DOM) quality, especially in humic-rich raw waters, may lead to intensive adaptions in drinking-water processing. However, seasonal DOM quality changes in standing waters are poorly understood. To fill this gap, the DOM quality of a German drinking water reservoir was investigated on a monthly basis by Fourier-transform ion cyclotron resonance mass spectrometry (FTICR MS) measurements and 2D fluorescence for 18 months. FTICR MS results showed seasonal changes of molecular formula (MF) intensities, indicating photochemical transformation of DOM as a significant process for DOM quality variation. For an assessment of the two humic-like components, identified by parallel factor analysis (PARAFAC) of excitation–emission matrices (EEM), their loadings were Spearman’s rank-correlated with the intensities of the FTICR MS-derived MF. One of the two PARAFAC components correlated to oxygenrich and relatively unsaturated MF identified as easily photo-degradable, also known as coagulants in flocculation processes. The other PARAFAC component showed opposite seasonal fluctuations and correlated with more saturated MF identified as photo-products with some of them being potential precursors of disinfection byproducts. Our study indicated the importance of elucidating both the chemical background and seasonal behavior of DOM if raw water-quality control is implemented by bulk optical parameters
Jamming percolation and glassy dynamics
We present a detailed physical analysis of the dynamical glass-jamming
transition which occurs for the so called Knight models recently introduced and
analyzed in a joint work with D.S.Fisher \cite{letterTBF}. Furthermore, we
review some of our previous works on Kinetically Constrained Models.
The Knights models correspond to a new class of kinetically constrained
models which provide the first example of finite dimensional models with an
ideal glass-jamming transition. This is due to the underlying percolation
transition of particles which are mutually blocked by the constraints. This
jamming percolation has unconventional features: it is discontinuous (i.e. the
percolating cluster is compact at the transition) and the typical size of the
clusters diverges faster than any power law when . These
properties give rise for Knight models to an ergodicity breaking transition at
: at and above a finite fraction of the system is frozen. In
turn, this finite jump in the density of frozen sites leads to a two step
relaxation for dynamic correlations in the unjammed phase, analogous to that of
glass forming liquids. Also, due to the faster than power law divergence of the
dynamical correlation length, relaxation times diverge in a way similar to the
Vogel-Fulcher law.Comment: Submitted to the special issue of Journal of Statistical Physics on
Spin glasses and related topic
Simulated Atmospheric N Deposition Alters Fungal Community Composition and Suppresses Ligninolytic Gene Expression in a Northern Hardwood Forest
High levels of atmospheric nitrogen (N) deposition may result in greater terrestrial carbon (C) storage. In a northern hardwood ecosystem, exposure to over a decade of simulated N deposition increased C storage in soil by slowing litter decay rates, rather than increasing detrital inputs. To understand the mechanisms underlying this response, we focused on the saprotrophic fungal community residing in the forest floor and employed molecular genetic approaches to determine if the slower decomposition rates resulted from down-regulation of the transcription of key lignocellulolytic genes, by a change in fungal community composition, or by a combination of the two mechanisms. Our results indicate that across four Acer-dominated forest stands spanning a 500-km transect, community-scale expression of the cellulolytic gene cbhI under elevated N deposition did not differ significantly from that under ambient levels of N deposition. In contrast, expression of the ligninolytic gene lcc was significantly down-regulated by a factor of 2–4 fold relative to its expression under ambient N deposition. Fungal community composition was examined at the most southerly of the four sites, in which consistently lower levels of cbhI and lcc gene expression were observed over a two-year period. We recovered 19 basidiomycete and 28 ascomycete rDNA 28S operational taxonomic units; Athelia, Sistotrema, Ceratobasidium and Ceratosebacina taxa dominated the basidiomycete assemblage, and Leotiomycetes dominated the ascomycetes. Simulated N deposition increased the proportion of basidiomycete sequences recovered from forest floor, whereas the proportion of ascomycetes in the community was significantly lower under elevated N deposition. Our results suggest that chronic atmospheric N deposition may lower decomposition rates through a combination of reduced expression of ligninolytic genes such as lcc, and compositional changes in the fungal community
A time-series phytoremediation experiment with sunflowers (Helianthus annuus) on a former uranium mining site
On a test field situated at a former uranium mining site near Ronneburg (Thuringia, Germany) a small scale time-series field experiment with sunflowers (Helianthus annuus) was carried out. This area ghas elevated contents for the heavy metals Cd, Co, Cr, Cu, Ni, Zn including the radionuclides U and Th. Over a time period of 24 weeks the sunflowers were cultivated on homogenized soil substrate and regularly harvested. The aim was to find the ideal moment to harvest the sunflowers, being defined as having the best balance between the extraction of the contaminants and a high biomass produced. The contents of the elements were determined in soil, roots and above-ground plant parts. The contents in the above-ground plant showed no clear increasing or decreasing trend over time, so they were not the appropriate values to determine the best moment to harvest. Instead the total extracted masses (content in μg/g x biomass in g) of the contaminants in the above-ground plant parts were calculated. According to this the best moment to harvest the sunflower plants was reached after 24 weeks of vegetation, because the highest extracted masses for all contaminants were calculated to this time. Additionally the biomass, which could be used e.g. for bio-fuel production, was highest at this time