34 research outputs found

    Post-bronchiolitis wheezing is associated with toll - like receptor 9 rs187084 gene polymorphism

    Get PDF
    Innate immunity receptors play a critical role in host defence, as well as in allergy and asthma. The aim of this exploratory study was to evaluate whether there are associations between TLR7 rs179008, TLR8 rs2407992, TLR9 rs187084 or TLR10 rs4129009 polymorphisms and viral findings, clinical characteristics or subsequent wheezing in infants with bronchiolitis. In all, 135 full-term infants were hospitalized for bronchiolitis at age less than 6 months: 129 of them were followed-up until the age of 1.5 years. The outcome measures were repeated wheezing, use of inhaled corticosteroids, atopic dermatitis during the first 1.5 years of life and total serum immunoglobulin E (IgE). There were no significant associations between the genotypes or allele frequencies of TLR7 rs179008, TLR8 rs2407992, TLR9 rs187084 or TLR10 rs4129009 polymorphisms and clinical characteristics or the severity of bronchiolitis during hospitalization. During follow-up, repeated wheezing was more common in children with TLR9 rs187084 variant genotype CC (30.5%) than in children with TLR9 wild-type genotype TT (12.2%) (p = 0.02, aOR 2.73, 95% CI 1.02-7.29). The TLR10 rs4129009 minor allele G was associated with elevated total serum IgE. TLR9 rs187084 gene polymorphism may be associated with post-bronchiolitis wheezing, and TLR10 rs4129009 gene polymorphism may be associated with atopy

    Comparative epigenetic analysis of tumour initiating cells and syngeneic EPSC-derived neural stem cells in glioblastoma

    Get PDF
    Epigenetic mechanisms which play an essential role in normal developmental processes, such as self-renewal and fate specification of neural stem cells (NSC) are also responsible for some of the changes in the glioblastoma (GBM) genome. Here we develop a strategy to compare the epigenetic and transcriptional make-up of primary GBM cells (GIC) with patient-matched expanded potential stem cell (EPSC)-derived NSC (iNSC). Using a comparative analysis of the transcriptome of syngeneic GIC/iNSC pairs, we identify a glycosaminoglycan (GAG)-mediated mechanism of recruitment of regulatory T cells (Tregs) in GBM. Integrated analysis of the transcriptome and DNA methylome of GBM cells identifies druggable target genes and patient-specific prediction of drug response in primary GIC cultures, which is validated in 3D and in vivo models. Taken together, we provide a proof of principle that this experimental pipeline has the potential to identify patient-specific disease mechanisms and druggable targets in GBM

    The Glucose Transporter 2 regulates CD8+ T cell function via environment sensing

    Get PDF
    T cell activation is associated with a profound and rapid metabolic response to meet increased energy demands for cell division, differentiation and development of effector function. Glucose uptake and engagement of the glycolytic pathway are major checkpoints for this event. Here we show that the low-affinity, concentration-dependent glucose transporter 2 (Glut2) regulates the development of CD8+ T cell effector responses in mice by promoting glucose uptake, glycolysis and glucose storage. Expression of Glut2 is modulated by environmental factors including glucose and oxygen availability and extracellular acidification. Glut2 is highly expressed by circulating, recently primed T cells, allowing efficient glucose uptake and storage. In glucose-deprived inflammatory environments, Glut2 becomes downregulated, thus preventing passive loss of intracellular glucose. Mechanistically, Glut2 expression is regulated by a combination of molecular interactions involving hypoxia-inducible factor-1 alpha, galectin-9 and stomatin. Finally, we show that human T cells also rely on this glucose transporter, thus providing a potential target for therapeutic immunomodulation

    The glucose transporter 2 regulates CD8<sup>+</sup> T cell function via environment sensing

    Get PDF
    T cell activation is associated with a profound and rapid metabolic response to meet increased energy demands for cell division, differentiation and development of effector function. Glucose uptake and engagement of the glycolytic pathway are major checkpoints for this event. Here we show that the low-affinity, concentration-dependent glucose transporter 2 (Glut2) regulates the development of CD8+ T cell effector responses in mice by promoting glucose uptake, glycolysis and glucose storage. Expression of Glut2 is modulated by environmental factors including glucose and oxygen availability and extracellular acidification. Glut2 is highly expressed by circulating, recently primed T cells, allowing efficient glucose uptake and storage. In glucose-deprived inflammatory environments, Glut2 becomes downregulated, thus preventing passive loss of intracellular glucose. Mechanistically, Glut2 expression is regulated by a combination of molecular interactions involving hypoxia-inducible factor-1 alpha, galectin-9 and stomatin. Finally, we show that human T cells also rely on this glucose transporter, thus providing a potential target for therapeutic immunomodulation

    Neutrophils restrain allergic airway inflammation by limiting ILC2 function and monocyte-dendritic cell antigen presentation

    Get PDF
    Neutrophil mobilization, recruitment, and clearance must be tightly regulated as overexuberant neutrophilic inflammation is implicated in the pathology of chronic diseases, including asthma. Efforts to target neutrophils therapeutically have failed to consider their pleiotropic functions and the implications of disrupting fundamental regulatory pathways that govern their turnover during homeostasis and inflammation. Using the house dust mite (HDM) model of allergic airway disease, we demonstrate that neutrophil depletion unexpectedly resulted in exacerbated T helper 2 (T 2) inflammation, epithelial remodeling, and airway resistance. Mechanistically, this was attributable to a marked increase in systemic granulocyte colony-stimulating factor (G-CSF) concentrations, which are ordinarily negatively regulated in the periphery by transmigrated lung neutrophils. Intriguingly, we found that increased G-CSF augmented allergic sensitization in HDM-exposed animals by directly acting on airway type 2 innate lymphoid cells (ILC2s) to elicit cytokine production. Moreover, increased systemic G-CSF promoted expansion of bone marrow monocyte progenitor populations, which resulted in enhanced antigen presentation by an augmented peripheral monocyte-derived dendritic cell pool. By modeling the effects of neutrophil depletion, our studies have uncovered previously unappreciated roles for G-CSF in modulating ILC2 function and antigen presentation. More broadly, they highlight an unexpected regulatory role for neutrophils in limiting T 2 allergic airway inflammation

    Nasopharyngeal Bacterial Colonization and Gene Polymorphisms of Mannose-Binding Lectin and Toll-Like Receptors 2 and 4 in Infants

    Get PDF
    BACKGROUND: Human nasopharynx is often colonized by potentially pathogenic bacteria. Gene polymorphisms in mannose-binding lectin (MBL), toll-like receptor (TLR) 2 and TLR4 have been reported. The present study aimed to investigate possible association between nasopharyngeal bacterial colonization and gene polymorphisms of MBL, TLR2 and TLR4 in healthy infants. METHODOLOGY/PRINCIPAL FINDINGS: From August 2008 to June 2010, 489 nasopharyngeal swabs and 412 blood samples were taken from 3-month-old healthy Finnish infants. Semi-quantitative culture was performed and pyrosequencing was used for detection of polymorphisms in MBL structural gene at codons 52, 54, and 57, TLR2 Arg753Gln and TLR4 Asp299Gly. Fifty-nine percent of subjects were culture positive for at least one of the four species: 11% for Streptococcus pneumoniae, 23% for Moraxella catarrhalis, 1% for Haemophilus influenzae and 25% for Staphylococcus aureus. Thirty-two percent of subjects had variant types in MBL, 5% had polymorphism of TLR2, and 18% had polymorphism of TLR4. Colonization rates of S. pneumoniae and S. aureus were significantly higher in infants with variant types of MBL than those with wild type (p = .011 and p = .024). Colonization rates of S. aureus and M. catarrhalis were significantly higher in infants with polymorphisms of TLR2 and of TLR4 than those without (p = .027 and p = .002). CONCLUSIONS: Our study suggests that there is an association between nasopharyngeal bacterial colonization and genetic variation of MBL, TLR2 and TLR4 in young infants. This finding supports a role for these genetic variations in susceptibility of children to respiratory infections

    Frequent Long-Range Epigenetic Silencing of Protocadherin Gene Clusters on Chromosome 5q31 in Wilms' Tumor

    Get PDF
    Wilms' tumour (WT) is a pediatric tumor of the kidney that arises via failure of the fetal developmental program. The absence of identifiable mutations in the majority of WTs suggests the frequent involvement of epigenetic aberrations in WT. We therefore conducted a genome-wide analysis of promoter hypermethylation in WTs and identified hypermethylation at chromosome 5q31 spanning 800 kilobases (kb) and more than 50 genes. The methylated genes all belong to α-, β-, and γ-protocadherin (PCDH) gene clusters (Human Genome Organization nomenclature PCDHA@, PCDHB@, and PCDHG@, respectively). This demonstrates that long-range epigenetic silencing (LRES) occurs in developmental tumors as well as in adult tumors. Bisulfite polymerase chain reaction analysis showed that PCDH hypermethylation is a frequent event found in all Wilms' tumor subtypes. Hypermethylation is concordant with reduced PCDH expression in tumors. WT precursor lesions showed no PCDH hypermethylation, suggesting that de novo PCDH hypermethylation occurs during malignant progression. Discrete boundaries of the PCDH domain are delimited by abrupt changes in histone modifications; unmethylated genes flanking the LRES are associated with permissive marks which are absent from methylated genes within the domain. Silenced genes are marked with non-permissive histone 3 lysine 9 dimethylation. Expression analysis of embryonic murine kidney and differentiating rat metanephric mesenchymal cells demonstrates that Pcdh expression is developmentally regulated and that Pcdhg@ genes are expressed in blastemal cells. Importantly, we show that PCDHs negatively regulate canonical Wnt signalling, as short-interfering RNA–induced reduction of PCDHG@ encoded proteins leads to elevated β-catenin protein, increased β-catenin/T-cell factor (TCF) reporter activity, and induction of Wnt target genes. Conversely, over-expression of PCDHs suppresses β-catenin/TCF-reporter activity and also inhibits colony formation and growth of cancer cells in soft agar. Thus PCDHs are candidate tumor suppressors that modulate regulatory pathways critical in development and disease, such as canonical Wnt signaling
    corecore