1,259 research outputs found

    The origin of the molecular emission around the southern hemisphere Re 4 IRS - HH 188 region

    Full text link
    We present SEST observations of the molecular environment ahead of the southern Herbig-Haro object 188 (HH188), associated with the low-mass protostar Re4 IRS. We have also used the SuperCosmos Halpha survey to search for Halpha emission associated with the Re4 IRS - HH188 region. The aim of the present work is to study the properties of the molecular gas and to better characterize this southern star forming region. We mapped the HCO+ 3-2 and H13CO+ 1-0 emission around the YSO and took spectra of the CH3OH 2(0)-1(0)A+ and 2(-1)-1(-1)E and SO 6(5)-5(4) towards the central source. Column densities are derived and different scenarios are considered to explain the origin of the molecular emission. HCO+ arises from a relatively compact region around the YSO; however, its peak emission is displaced to the south following the outflow direction. Our chemical analysis indicates that a plausible scenario is that most of the emission arises from the cold, illuminated dense gas ahead of the HH188 object. We have also found that HH188, a high excitation object, seems to be part of a parsec scale and highly collimated HH system. Re4 IRS is probably a binary protostellar system, in the late Class 0 or Class I phase. One of the protostars, invisible in the near-IR, seems to power the HH188 system.Comment: 9 pages, 6 figures, accepted for publication in Astronomy & Astrophysic

    Chemistry of dense clumps near moving Herbig-Haro objects

    Full text link
    Localised regions of enhanced emission from HCO+, NH3 and other species near Herbig-Haro objects (HHOs) have been interpreted as arising in a photochemistry stimulated by the HHO radiation on high density quiescent clumps in molecular clouds. Static models of this process have been successful in accounting for the variety of molecular species arising ahead of the jet; however recent observations show that the enhanced molecular emission is widespread along the jet as well as ahead. Hence, a realistic model must take into account the movement of the radiation field past the clump. It was previously unclear as to whether the short interaction time between the clump and the HHO in a moving source model would allow molecules such as HCO+ to reach high enough levels, and to survive for long enough to be observed. In this work we model a moving radiation source that approaches and passes a clump. The chemical picture is qualitatively unchanged by the addition of the moving source, strengthening the idea that enhancements are due to evaporation of molecules from dust grains. In addition, in the case of several molecules, the enhanced emission regions are longer-lived. Some photochemically-induced species, including methanol, are expected to maintain high abundances for ~10,000 years.Comment: 7 pages, 3 figure

    Modelling the ArH+^+ emission from the Crab Nebula

    Get PDF
    We have performed combined photoionization and photodissociation region (PDR) modelling of a Crab Nebula filament subjected to the synchrotron radiation from the central pulsar wind nebula, and to a high flux of charged particles; a greatly enhanced cosmic ray ionization rate over the standard interstellar value, ζ0\zeta_0, is required to account for the lack of detected [C I] emission in published Herschel SPIRE FTS observations of the Crab Nebula. The observed line surface brightness ratios of the OH+^+ and ArH+^+ transitions seen in the SPIRE FTS frequency range can only be explained with both a high cosmic ray ionization rate and a reduced ArH+^+ dissociative recombination rate compared to that used by previous authors, although consistent with experimental upper limits. We find that the ArH+^+/OH+^+ line strengths and the observed H2_2 vibration-rotation emission can be reproduced by model filaments with nH=2×104n_{\rm{H}} = 2 \times 10^4 cm−3^{-3}, ζ=107ζ0\zeta = 10^7 \zeta_0 and visual extinctions within the range found for dusty globules in the Crab Nebula, although far-infrared emission from [O I] and [C II] is higher than the observational constraints. Models with nH=1900n_{\rm{H}} = 1900 cm−3^{-3} underpredict the H2_2 surface brightness, but agree with the ArH+^+ and OH+^+ surface brightnesses and predict [O I] and [C II] line ratios consistent with observations. These models predict HeH+^+ rotational emission above detection thresholds, but consideration of the formation timescale suggests that the abundance of this molecule in the Crab Nebula should be lower than the equilibrium values obtained in our analysis.Comment: Accepted by MNRAS. Author accepted manuscript. Accepted on 05/09/2017. Deposited on 05/09/1

    Modelling the sulphur chemistry evolution in Orion KL

    Full text link
    We study the sulphur chemistry evolution in the Orion KL along the gas and grain phases of the cloud. We investigate the processes that dominate the sulphur chemistry and to determine how physical and chemical parameters, such as the final star mass and the initial elemental abundances, influence the evolution of the hot core and of the surrounding outflows and shocked gas (the plateau). We independently modelled the chemistry evolution of both components using the time-dependent gas-grain model UCL_CHEM and considering two different phase calculations. Phase I starts with the collapsing cloud and the depletion of atoms and molecules onto grain surfaces. Phase II starts when a central protostar is formed and the evaporation from grains takes place. We show how the gas density, the gas depletion efficiency, the initial sulphur abundance, the shocked gas temperature and the different chemical paths on the grains leading to different reservoirs of sulphur on the mantles affect sulphur-bearing molecules at different evolutionary stages. We also compare the predicted column densities with those inferred from observations of the species SO, SO2, CS, OCS, H2S and H2CS. The models that reproduce the observations of the largest number of sulphur-bearing species are those with an initial sulphur abundance of 0.1 times the sulphur solar abundance and a density of at least n_H=5x10^6 cm^-3 in the shocked gas region. We conclude that most of the sulphur atoms were ionised during Phase I, consistent with an inhomogeneous and clumpy region where the UV interstellar radiation penetrates leading to sulphur ionisation. We also conclude that the main sulphur reservoir on the ice mantles was H2S. In addition, we deduce that a chemical transition currently takes place in the shocked gas, where SO and SO2 gas-phase formation reactions change from being dominated by O2 to being dominated by OH.Comment: 14 pages, 28 figures, 6 table

    High Framerate Imaging of Ultrasound Contrast Agents

    Get PDF
    Ultrasound contrast agents (UCAs) consists of a suspension of tiny gas bubbles that is injected into a patient's bloodstream to enhance the visualization of blood in ultrasound images. As UCAs respond differently to ultrasound pulses compared to the surrounding soft tissues and blood, it is possible to employ specialized techniques to identify and isolate UCAs in an ultrasound image. This is commonly referred to as Ultrasound Contrast Imaging. This PhD thesis evaluates several traditional ultrasound contrast imaging strategies, based on scanning images through linear arrays; furthermore, innovative high frame rate strategies are explored, which are shown to be suited for high sensitivity tracking of even a single microbubble

    Mapping CS in Starburst Galaxies: Disentangling and Characterising Dense Gas

    Full text link
    Aims. We observe the dense gas tracer CS in two nearby starburst galaxies to determine how the conditions of the dense gas varies across the circumnuclear regions in starburst galaxies. Methods. Using the IRAM-30m telescope, we mapped the distribution of the CS(2-1) and CS(3-2) lines in the circumnuclear regions of the nearby starburst galaxies NGC 3079 and NGC 6946. We also detected the formaldehyde (H2CO) and methanol (CH3OH) in both galaxies. We marginally detect the isotopologue C34S. Results. We calculate column densities under LTE conditions for CS and CH3OH. Using the detections accumulated here to guide our inputs, we link a time and depth dependent chemical model with a molecular line radiative transfer model; we reproduce the observations, showing how conditions where CS is present are likely to vary away from the galactic centres. Conclusions. Using the rotational diagram method for CH3OH, we obtain a lower limit temperature of 14 K. In addition to this, by comparing the chemical and radiative transfer models to observations, we determine the properties of the dense gas as traced by CS (and CH3OH). We also estimate the quantity of the dense gas. We find that, provided that there are a between 10^5 and 10^6 dense cores in our beam, for both target galaxies, emission of CS from warm (T = 100 - 400 K), dense (n(H2) = 10^5-6 cm-3) cores, possibly with a high cosmic ray ionisation rate (zeta = 100 zeta0) best describes conditions for our central pointing. In NGC 6946, conditions are generally cooler and/or less dense further from the centre, whereas in NGC 3079, conditions are more uniform. The inclusion of shocks allows for more efficient CS formation, leading to an order of magnitude less dense gas being required to replicate observations in some cases.Comment: 14 pages, 10 figures, accepted to A&

    Desorption From Interstellar Ices

    Full text link
    The desorption of molecular species from ice mantles back into the gas phase in molecular clouds results from a variety of very poorly understood processes. We have investigated three mechanisms; desorption resulting from H_2 formation on grains, direct cosmic ray heating and cosmic ray induced photodesorption. Whilst qualitative differences exist between these processes (essentially deriving from the assumptions concerning the species-selectivity of the desorption and the assumed threshold adsorption energies, E_t) all three processes are found to be potentially very significant in dark cloud conditions. It is therefore important that all three mechanisms should be considered in studies of molecular clouds in which freeze-out and desorption are believed to be important. Employing a chemical model of a typical static molecular core and using likely estimates for the quantum yields of the three processes we find that desorption by H_2 formation probably dominates over the other two mechanisms. However, the physics of the desorption processes and the nature of the dust grains and ice mantles are very poorly constrained. We therefore conclude that the best approach is to set empirical constraints on the desorption, based on observed molecular depletions - rather than try to establish the desorption efficiencies from purely theoretical considerations. Applying this method to one such object (L1689B) yields upper limits to the desorption efficiencies that are consistent with our understanding of these mechanisms.Comment: 11 pages, 5 figures, accepted by MNRAS subject to minor revision which has been carried ou

    Extragalactic CS survey

    Full text link
    We present a coherent and homogeneous multi-line study of the CS molecule in nearby (D<<10Mpc) galaxies. We include, from the literature, all the available observations from the J=1−0J=1-0 to the J=7−6J=7-6 transitions towards NGC 253, NGC 1068, IC 342, Henize~2-10, M~82, the Antennae Galaxies and M~83. We have, for the first time, detected the CS(7-6) line in NGC 253, M~82 (both in the North-East and South-West molecular lobes), NGC 4038, M~83 and tentatively in NGC 1068, IC 342 and Henize~2-10. We use the CS molecule as a tracer of the densest gas component of the ISM in extragalactic star-forming regions, following previous theoretical and observational studies by Bayet et al. (2008a,b and 2009). In this first paper out of a series, we analyze the CS data sample under both Local Thermodynamical Equilibrium (LTE) and non-LTE (Large Velocity Gradient-LVG) approximations. We show that except for M~83 and Overlap (a shifted gas-rich position from the nucleus NGC 4039 in the Antennae Galaxies), the observations in NGC 253, IC 342, M~82-NE, M~82-SW and NGC 4038 are not well reproduced by a single set of gas component properties and that, at least, two gas components are required. For each gas component, we provide estimates of the corresponding kinetic temperature, total CS column density and gas density.Comment: 17 pages, 16 figures, 3 tables, Accepted to Ap

    History-independent tracers. Forgetful molecular probes of the physical conditions of the dense interstellar medium

    Get PDF
    Molecular line emission is a powerful probe of the physical conditions of astrophysical objects but can be complex to model, and it is often unclear which transitions would be the best targets for observers who wish to constrain a given parameter. We therefore produce a list of molecular species for which the gas history can be ignored, removing a major modelling complexity. We then determine the best of these species to observe when attempting to constrain various physical parameters. To achieve this, we use a large set of chemical models with different chemical histories to determine which species have abundances at 1 MYr that are insensitive to the initial conditions. We then use radiative transfer modelling to produce the intensity of every transition of these molecules. We finally compute the mutual information between the physical parameters and all transitions and transition ratios in order to rank their usefulness in determining the value of a given parameter. We find 48 species that are insensitive to the chemical history of the gas, 23 of which have collisional data available. We produce a ranked list of all the transitions and ratios of these species using their mutual information with various gas properties. We show mutual information is an adequate measure of how well a transition can constrain a physical parameter by recovering known probes and demonstrating that random forest regression models become more accurate predictors when high-scoring features are included. Therefore, this list can be used to select target transitions for observations in order to maximize knowledge about those physical parameters
    • …
    corecore