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ABSTRACT

Context. Molecular line emission is a powerful probe of the physical conditions of astrophysical objects but can be complex to model,
and it is often unclear which transitions would be the best targets for observers who wish to constrain a given parameter.
Aims. We produce a list of molecular species for which the gas history can be ignored, removing a major modelling complexity. We
then determine the best of these species to observe when attempting to constrain various physical parameters.
Methods. We use a large set of chemical models with different chemical histories to determine which species have abundances at 1
MYr that are insensitive to the initial conditions. We then use radiative transfer modelling to produce the intensity of every transition
of these molecules. We finally compute the mutual information between the physical parameters and all transitions and transition
ratios in order to rank their usefulness in determining the value of a given parameter.
Results. We find 48 species that are insensitive to the chemical history of the gas, 23 of which have collisional data available. We
produce a ranked list of all the transitions and ratios of these species using their mutual information with various gas properties. We
show mutual information is an adequate measure of how well a transition can constrain a physical parameter by recovering known
probes and demonstrating that random forest regression models become more accurate predictors when high-scoring features are
included. Therefore, this list can be used to select target transitions for observations in order to maximize knowledge about those
physical parameters.
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1. Introduction

When observing astrophysical environments, molecular line
emission offers a wealth of information about the emitting gas;
the varying radiative properties of different species means that
some are great tracers of specific conditions. For example, gas
density can be probed using species that are sensitive to this pa-
rameter, such as CS, due to the high critical density of many of
their transitions (Bayet et al. 2009). On the other hand, gas tem-
perature can be inferred from species such as H2CO, which gives
good estimates of the gas kinetic temperature due to the arrange-
ment of its rotational energy levels (Mangum et al. 1993).

Chemistry complicates and complements this by linking the
emission of species to more physical parameters through the
abundance of the emitting molecule. Radiative transfer mod-
elling of ions such as C+ can inform an observer of the gas con-
ditions, but these species are most interesting due to the fact that
their abundance is tied to the amount of ionizing radiation the gas
is exposed to. Considering chemistry can therefore give a differ-
ent view of which species are important. Species such as CO are
useful for their near-constant abundance relative to H2 (Liu et al.
2013), whilst others are considered useful due to the fact that
they are only found in specific conditions, such as strong shocks
in the case of SiO (Jiménez-Serra et al. 2008; Martin-Pintado
et al. 1997).

For this reason, observing molecules with the objective of
characterizing the emitting gas is common (e.g. Gómez-Ruiz
et al. 2016; Tanaka et al. 2018; Mangum et al. 2019). With mea-
sured intensities, one can fit radiative transfer and chemical mod-
els to find the underlying physical parameters that give rise to
the emission (e.g. Holdship et al. 2019) or one can link mea-
sured column densities back to physical parameters using prede-
termined relationships (e.g. Bovino et al. 2020).

However, despite the strong links between the radiative and
chemical properties of a species and the observed line intensities,
molecules are often chosen opportunistically or based on heuris-
tics from focused chemical modelling studies. Less common is
a statistics-based approach to mining a model dataset for useful
relationships. For example, Bron et al. (2021) use a large set of
synthetic data to determine which line ratios are most useful for
predicting the ionization fraction of a gas. This approach opens
up the possibility of planning observations based on the physical
parameters we wish to know with the best possible information
on which species will be useful.

Whilst this approach is promising, complications can arise
when involving chemistry in our modelling of observed line in-
tensities. One particular complication is that the age and history
of an object are often unknown. If the age is unknown, then it
is often assumed that the abundances have reached steady state,
but the history can complicate this. In the best case, the initial
abundances can affect how long it takes to reach steady state
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and therefore whether such an assumption is applicable. In the
worst, the initial abundances may affect the steady state value.
For example, in hot gas (∼ 200 K), gas phase reactions that both
form and destroy methanol are extremely inefficient. Therefore,
the gas phase methanol abundance will depend entirely on the
initial abundance since the grain surface chemistry is effectively
cut off by the high temperature of the gas.

The history then is a large concern, and a variety of methods
are used by chemical modellers to account for it. In some cases,
an evolved object of gas density nH is modelled by first running
a collapse phase where atomic gas is evolved to this density (e.g.
Coutens et al. 2018) to give reasonable initial abundances. Alter-
natively, the gas is evolved at the required density in quiescent
conditions for a short period, such as 1 Myr, before the science
model begins (e.g. Vidal & Wakelam 2018; Booth et al. 2021).
However, neither method offers perfectly realistic starting abun-
dances, and both are therefore a source of uncertainty in any
modelling conclusions.

As a solution to this, we propose a modelling effort to de-
velop a list of species that we call history-independent tracers
(HITs). We define these as molecules that – under a wide variety
of physical conditions – will quickly converge to the same abun-
dance from a diverse set of initial abundances. That is to say,
they ‘forget’ their chemical history in a short time span, mak-
ing an unknown gas history irrelevant to their modelling. We
then go further by taking a statistical approach to determining
which physical parameters can be most easily retrieved using
the rotational emission of each of these HITs. This will produce
a list of species that are relatively simple to model and will allow
for strong constraints on specific physical parameters, providing
an opportunity for observers to target their observations accord-
ingly.

In Sect. 2 we describe the process followed to generate the
list of HITs, including a detailed explanation of the modelling
in Sect. 2.1. In Sect. 3 we present our HITs and the physical
parameters for which they are most useful. In Sect. 4 we discuss
the limitations of our analysis and assess whether our method
produces informative probes. Finally, the work is summarized in
Sect. 5.

2. Methods

The analysis in this work is a four stage process. First, we re-
peatedly ran a large grid of chemical models, using different
initial abundances each time. Second, we used the output abun-
dances of that grid to find the species that converge to the same
abundance within 1 Myr for any given physical conditions re-
gardless of initial abundances: these are the HITs. Then we pro-
duced model line intensities of the HITs for every model in our
grid. Finally, we took a statistical approach to determining which
line intensities are most informative about our underlying phys-
ical parameters to determine the use of each HIT. Each of these
stages is explained in detailed in the following sections.

2.1. Chemical modelling

For this work, we used the time-dependent, gas-grain chemical
code UCLCHEM1(Holdship et al. 2017) to determine the chemi-
cal abundances of 304 species as a function of time. We used the
most recent release (v2.0) of the code, which includes several
major updates. The most important of these is the introduction
of three-phase chemistry, in which we treat the surface and the

1 https://uclchem.github.io

Table 1. Histories run for each density in the main model grid. If the
initial density is 100.0 cm−3, the model collapsed to the density used in
the main model. Otherwise, it started at the required density. The final
model represents no chemical evolution.

Initial Density / cm−3 Temperature / K Age

100.0 10.0 Freefall time
100.0 30.0 Freefall time
100.0 10.0 Freefall time + 1 Myr
Final 10.0 1 Myr
Final 30.0 1 Myr

- - 0 Myr

Table 2. Physical parameters varied across the grid of models with their
ranges and whether linear or log space sampling was used.

Variable Unit Range Sampling

Density cm−3 104-107 log
Temperature K 10–300 linear

FUV Habing 1–103 log
AV mag 1–10 log
ζ 1.3 × 10−17 s−1 1–103 log

bulk of the ice mantles separately, following Garrod & Pauly
(2011) and Ruaud et al. (2016).

To produce a variety of initial abundances from which our
grid of science models will evolve, we ran six different prelim-
inary models to act as the gas ‘histories’. The final abundances
of these histories are used as initial abundances for the science
models. In choosing these histories, we aim to make our initial
abundances as varied as possible rather than to be strictly realis-
tic, as that would necessitate choosing a type of object to model
and would limit the applicability of the analysis.

We chose to mimic commonly used chemical modelling ap-
proaches by using collapse models and static clouds for our his-
tories. Additionally, we included the extreme case of initializing
the science models with purely atomic gas. This results in pre-
liminary models where complex chemistry and ice phase abun-
dances have built up to different degrees and represent a wide
span of possible initial abundances. The histories are given in Ta-
ble 1. Models with an initial density of 100 cm−3 increase in den-
sity following a simple free-fall equation (Rawlings et al. 1992)
up to the density of the science model. The other models are ini-
tialized at the required density and simply evolve under constant
gas conditions.

These histories were then used to provide the starting abun-
dances for a grid of models in which we varied the local UV
field, the cosmic ray ionization rate, gas temperature, and gas
density. We ran each model for 1 Myr and retrieved the final
abundances for all species. The parameter ranges are given in Ta-
ble 2. Since the histories must be calculated for each gas density,
we used four fixed density values. For the other parameters, we
sampled 1000 points from the parameter space using Latin hy-
percube sampling. This results in a grid of 4,000 models, which
we ran for each of the six histories.

2.2. Finding HITs

With the abundances after 1 Myr of chemical evolution from di-
verse histories, we searched for species that give the same abun-
dance regardless of their history. To do this, we first grouped
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our database by species and physical parameter values and cal-
culated the standard deviation of the log abundances. This stan-
dard deviation is therefore the average amount the abundance of
a species varies across our histories for a given set of physical
parameters. An ideal HIT will have a standard deviation of zero
because the same parameters will give the same abundance re-
gardless of history.

We then took all these standard deviations and calculated
the mean across all physical conditions for a given species. This
mean will be zero if a species’ variation due to history is zero for
all physical conditions but will increase if a species is sensitive
to its history under certain conditions.

A perfect HIT will have a mean deviation of 0.0, but we will
also consider the percentage of models in our grid for which a
species has a deviation of < 0.5 dex. This less stringent require-
ment will help identify species that are typically history inde-
pendent in the event no perfect HITs are found.

We imposed three additional constraints when selecting
HITs. Firstly, we considered gas phase species only. Whilst grain
surface chemistry is included in our model, our goal is to recom-
mend observational targets from which one can infer gas prop-
erties. Species in the ices are not easy to detect and are complex
to model. Secondly, for a species to be considered a HIT, it must
have a median fractional abundance >10−12 so that it is likely to
be observable. Finally, collisional data must be available in the
LAMDA database (Schöier et al. 2005).

2.3. Model intensities

Our goal is ultimately to link observables to underlying physi-
cal parameters using chemistry that we can demonstrate is sim-
ple to model. Therefore, we used our grid of models to produce
line intensities for every transition of the HITs for which colli-
sional data are available in the LAMBDA database (Schöier et al.
2005). As a simplifying choice, we used the ALMA frequency
range to limit the range of transitions we consider.

We produced the line intensities using SpectralRadex2

(Holdship et al. 2021; van der Tak et al. 2007). Our RADEX
inputs are the H2 density, the gas temperature, and a species
column density calculated by multiplying the radius of the
model cloud by its density and the species abundance. History-
independent tracers can still vary slightly in abundance for a
given set of physical parameters over the different histories in
our grid, so we took the average for our RADEX input. In ad-
dition to these model-specific parameters, we chose an arbitrary
line full width at half maximum of 5 km s−1 and an ortho-to-para
ratio of 3 when densities of the isotopomers of H2 are required
for RADEX. In many conditions, the H2 ortho-para ratio will
differ from this value. We therefore computed the line intensi-
ties with a ratio of 0.1 to determine whether a change in this
value would affect our results, and we found no change to our
conclusions, indicating that this analysis is not sensitive to this
assumption.

In order to make our line intensities more realistic, we added
random noise to every line flux. Without noise, a line that would
be undetectable in most cases may still be found to be impor-
tant, and so we simply needed to add sufficient noise to make
weak lines uninformative. We assumed an rms value of 0.05 K
and a velocity resolution of 0.5 km s−1 to calculate the uncer-
tainty on an integrated emission taken over 20 channels. This is
∼ 1 K km s−1. We consider this to be a reasonable value for the
noise level on galactic observations, and it is certainly sufficient

2 https://spectralradex.readthedocs.io

to mask any information contained in lines much lower in inten-
sity than this value.

Finally, we accounted for the fact that low resolution or large
line widths can result in multiple transitions being blended. We
combined the flux of any transitions of a given species that are
within 10 MHz of one another. This typically has the effect of
combining hyperfine lines into a single flux. The result of this
whole process is a table of physical conditions and the corre-
sponding intensities of every transition of the HITs.

2.4. Connecting HITs to physical parameters

The final step in the process was to determine the use of each
HIT by finding which HITs are most informative about each
physical parameter in our models. To do this, we estimated the
mutual information between each transition’s fluxes and the tar-
get variables. Mutual information is a measure of how much in-
formation one variables provides about another (Cover & Joy
1991), and ranking variables by the mutual information is a com-
mon feature selection algorithm that has been shown to be effec-
tive in minimizing prediction error (Frénay et al. 2013).

Before evaluating the mutual information, we scaled the line
intensities using the QuantileTransformer class from the scikit-
learn python library (Pedregosa et al. 2011). This assigns every
intensity a new value from 0-1 depending on the percentile it be-
longs to when compared to all intensities of the same transition.
This has the benefit of being robust to outliers, which is impor-
tant as RADEX will occasionally predict spurious, near-infinite
values that are compressed to the range 0.99-1.0.

In addition to the fluxes of every transition of our HITs, we
calculated all possible line ratios from the transitions because
line ratios are commonly used as probes of physical parame-
ters and are likely to be informative (e.g. Green et al. 2016; Viti
2017; Hacar et al. 2020). We included all possible combinations
because we find that the best line ratios are not necessarily the
ones that combine the most informative single transitions, and
therefore, the importance of line combinations must be calcu-
lated separately to find the most useful features. Henceforth, we
refer to individual ratios and transitions as features.

We then used the mutual_info_regression function from
scikit-learn between all features and physical variable values.
The result is a table of every pair of species transition and target
physical parameters with their mutual information. From this,
the best transitions to observe in order to constrain a given pa-
rameter can be found and the average information per transition
can be calculated to determine which species are typically most
useful for measuring a given physical parameter.

3. Results

3.1. Identifying HITs

Following the procedure described in Sect. 2.2, we find 52 gas
phase species that have a mean standard deviation across all
physical conditions that is less than 0.5 dex. However, there ex-
ists at least one set of physical conditions for every species where
the standard deviation between histories is greater than 0.5 dex.
This means there are no perfect HITs. Instead, we look at the
percentage of parameter combinations for which a species abun-
dance deviates by less than 0.5 dex between histories.

We find 43 gas phase species that have a standard deviation
of < 0.5 dex in at least 80% of cases. A further 30 species fit
this criterion but have a median abundance of <10−12 and so are
discarded as they will typically be too low in abundance to be
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Table 3. Species that have an abundance after 1 Myr that varies by less
than 0.5 dex depending on initial conditions in at least 80% of cases.

Species Percentage Convergence Time / yr

CO 97 1.0 × 103

OH 96 1.0 × 104

HCL 92 1.0 × 10−1

CS 91 1.0 × 104

CH 89 9.0 × 104

HCN 88 5.1 × 104

CN 88 1.7 × 104

C+ 88 4.1 × 104

HNC 88 7.6 × 104

H2O 87 3.3 × 104

H3O+ 87 1.0 × 104

HCO 86 1.1 × 105

NO 85 4.4 × 104

HCO+ 85 1.5 × 104

N2H+ 85 2.8 × 104

NH3 84 7.8 × 104

CH3CN 84 1.0 × 105

H2S 83 8.6 × 104

SIO 83 1.0 × 104

CH2 83 1.0 × 105

HCS+ 82 1.0 × 104

SO 81 8.0 × 104

H2CO 81 1.0 × 105

observed easily. Of the 43 acceptable HITs, we present in Ta-
ble 3 the 23 species for which collisional data are available in
the LAMDA database (Schöier et al. 2005).

In Fig. 1 we show the time evolution of a selection of the
HITs for various physical parameters. The left column shows
models at a density of 104 cm−3, and the right column shows
similar models at 107 cm−3. The top row shows a model with all
parameters at the low end of the ranges given in Table 2, and each
subsequent row pushes one parameter to the highest end of the
range. Each line style in the plots represents a model run with the
same physical parameters but from different initial abundances.
These traces start with differences of orders of magnitude but
almost always converge before 1 MYr, at which point we can
claim the species has forgotten its chemical history. Typically,
the HITs take less time to converge in high density models.

The time taken for a HIT to forget its history is an impor-
tant result, and we call it the convergence time. If the conver-
gence time is shorter than the timescale over which an object’s
chemistry is to be modelled, the history of the gas need not be
considered. The median time taken for each HIT’s abundance to
converge is given in Table 3. The smaller this number, the more
quickly the species tends to forget its history.

3.2. Tracers

In this section we discuss each physical parameter in turn, list-
ing the best probes of that parameter and discussing the potential
benefits and drawbacks of those probes. However, we addition-
ally provide the full table of transitions, parameters, and their
mutual information as supplementary material so that observers
can select their own targets based on the mutual information and

guidance provided in Sect. 4.3. Our results are also searchable at
our website.3

3.2.1. Temperature

The most useful features for estimating the temperature are al-
most entirely line ratios. This is to be expected as the relative
excitation of lines with different properties is strongly dependent
on the temperature. However, what may be more unusual is that
line ratios between transitions of different species become very
important when chemistry is included as the relative abundances
become informative rather than being free parameters.

Ratios between various transitions of CO and many of transi-
tions of CH2, CH3CN, H2S, and NO all have mutual information
scores between 1.25 and 1.3, making them dominate the ranked
list of most informative features. In fact, CO is easily the most
informative species as not only is it part of every single ratio
in the top 100 most informative features, its transitions above
300 GHz are similarly informative.

It is worth considering whether our method assigns high im-
portance to known temperature probes. The HCN-to-HNC ra-
tio has recently been proposed as a temperature probe (Hacar
et al. 2020), and we find that ratios of these species have mu-
tual information scores in the range 0.8-0.95. The use of ratios
between transitions of H2CO is also an established temperature
probe (Mangum et al. 1993), and we find a mutual information
score of 0.6 between many of those line ratios and the tempera-
ture. These high mutual information scores show that our method
is assigning larger importance to useful features. However, our
combination of chemistry and radiative transfer allows us to find
even more sensitive probes as many of our ratios have higher im-
portance. This is reflected in Sect. 4.2, where we show the uncer-
tainty in temperature predictions with our most useful features,
finding that they are significantly smaller than those obtained
from H2CO ratios in Mangum et al. (1993).

3.2.2. Gas density

Gas density is also best probed through ratios. However, at 0.85,
the top ranked feature has a mutual information score signifi-
cantly lower than that of the gas temperature, indicating that
constraining this parameter will require more transitions than the
temperature.

Similarly to the temperature, the list of most important fea-
tures is dominated by a single species, SO in this case. Ratios
among SO transitions and between SO and NO, CH2, N2H+, and
NO are all highly ranked. However, one notable difference from
the case of temperature is that the usefulness of these ratios ap-
pears to be independent of inversion. All useful CO ratios for
determining temperature use a CO line as the numerator, but ra-
tios with SO for the gas density appear to have similar mutual
information regardless of orientation.

SO also has several transitions – at 66.03, 428.11, and
384.53 GHz – that are independently informative of the density.
These are useful for observations with limited bandwidth, par-
ticularly the 66.03 GHz transitions, which can be combined with
a CH2 transition at 69.04 GHz.

Comparing this to known density probes, we find that all
of the most informative single transitions belong to the dense
gas tracer NH3 (Tafalla et al. 2006). Furthermore, excluding SO,
which appears to be a new probe of density, we find that com-
binations of CS, NH3, and N2H+ are all highly ranked and are

3 https://uclchem.github.io/hits
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Fig. 1. Fractional abundance, with respect to the total number of hydrogen nuclei, of selected HITs as a function of time. Different line styles
represent different initial abundances due to different histories. The colour indicates the species.
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known dense gas tracers (Bayet et al. 2009; Punanova et al. 2018;
Johnstone et al. 2010).

3.2.3. Visual extinction

Unsurprisingly, given its known photodissociation in regions of
low visual extinction, CO is the most informative species for
predicting AV . Many ratios with H2CO, H2S, H3O+, and HCO+

have information scores between 0.9 and 1.0. Each of these ra-
tios makes use of a CO transition as the numerator.

Unlike the previous two parameters, no individual transition
is particularly informative for the visual extinction. The CO tran-
sition at 230.54 GHz has a mutual information of just 0.64, ap-
proximately two-thirds of the value of the best ratios. There are
also many NO transitions that have a similar information score
as the CO transitions; however, NO does not appear in any of
the most useful ratios. This is an important note: simply com-
bining informative features does not necessarily produce useful
features, and features with individually low information scores
often combine to make something very informative.

3.2.4. Cosmic ray ionization rate

The cosmic ray ionization rate has one of the lowest mu-
tual information scores with its most useful feature. Ratios of
CO/H3O+, H2O/H3O+, CO/HCO+, and HCN/HNC have mutual
information scores between 0.7 and 0.8. The HCO+ and H3O+

lines are also the most individually informative transitions, likely
due to the sensitivity of their abundances to the ionization rate.
With that in mind, the most useful ratios appear to be the ratio
of these ionization-sensitive species to something ubiquitous and
less sensitive, such as CO and H2O.

Whilst these ratios are the most useful, there are many
H2S/CO ratios that are only slightly less informative. Almost all
of these ratios use the CO 230.54 GHz transition as the denom-
inator. This makes the 228.56 GHz H2S line particularly useful
as a small observing bandwidth would capture both lines and a
slightly larger window may also capture an additional H2 transi-
tion at 204.14 GHz.

Molecular tracers of the cosmic ray ionization rate are less
common in the literature. However, Izumi et al. (2016) find that
the HCN-to-HCO+ ratio is a good indicator of active galactic
nucleus activity based on its response to X-ray irradiation. Since,
chemically, there is little difference between the effects of cosmic
ray and X-ray radiation (Viti et al. 2014), it is likely this ratio
would be useful for the cosmic ray ionization rate. We find that
ratios of these species have mutual information scores between
0.5 and 0.6, putting them in the top percentile of features.

3.2.5. External UV flux

The external UV field is the physical parameter that has the
least mutual information with the features. The best features
have a mutual information score of 0.74. Surprisingly, given how
strongly the two parameters interact in UCLCHEM, the mutual
information between each feature and the UV field does not cor-
relate with the information between the transitions and the visual
extinction.

The most useful features for estimating the UV field are
ratios of HCN/HNC and their inverse, CO/H3O+, CO/HCO+,
and H2O/H3O+. We also find a remarkably similar situation to
the cosmic ray ionization rate, in the sense that many ratios of
H2S/CO are informative about the UV field.

However, we note that none of these are as informative as the
top species listed for other variables and that UCLCHEM is not
designed to properly treat photon-dominated regions. Thus, if
the UV field is of particular interest, this is unlikely to be the best
modelling approach and a PDR model should be used instead.

4. Discussion

4.1. Multipurpose HITs

Regarding the individual lists of the most informative features
for each physical parameter, many features appear in multiple
lists. Thus, we investigated which species and ratios of species’
transitions provide the most information on the most physical pa-
rameters. To do this, we ranked each species by its mean mutual
information with a physical parameter across all of its transitions
and each pair of species by the mean of their mutual information
across all of their possible transition ratios.

In every case, species ratios were the most informative, and
so we present the top five species pairs for each physical param-
eter in Table 4. An X indicates that the ratios of a given pair of
species are in the top five most informative ratios for a physical
parameter.

We find that ratios of CO and H2S are particularly useful.
Transition ratios from these species have high mutual informa-
tion with four physical parameters: the gas temperature, the cos-
mic ray ionization rate, the UV field, and visual extinction. CO
is an extremely useful species in general, appearing many times
in different pairs throughout the table.

Another interesting species is SO, which appears in every
species pair in the top five list for gas density, including in ra-
tios between its own transitions. This is convenient as it means
that focusing on transitions of SO could be an effective way to
constrain the gas density. However, the lack of a crossover be-
tween the top five list for gas density and the other parameters
does make it difficult to constrain all parameters at once.

4.2. HIT accuracy

In previous sections we have listed the most informative features
for predicting a given parameter. However, whilst one expects
a transition with a high mutual information score to be strongly
predictive of the parameter, it is not clear how our predictive per-
formance varies with mutual information scores. To investigate
how accurately these parameters can be recovered, we trained
predictive models for each parameter and evaluated their perfor-
mance.

To properly evaluate our features, we required a statistical
model that is likely to perform well if the inputs it is given are
predictive of a given parameter. For this reason, we chose ran-
dom forest regressors, which are flexible models that typically
perform well even on complex tasks. For each parameter, we
trained a random forest on 75% of our dataset and tested it on
the rest using one, five, and ten features selected from the mu-
tual information table as inputs. Those features were chosen by
prioritizing the features that share the most information with the
target variable but only allowing one ratio per pair of species to
be included (see Sect. 4.3).

We present the mean absolute percentage error of the ran-
dom forest model when trained with each subset of features in
Table 5. We also show the performance of the models on the test
data in Fig. 2, which uses a colour scale to indicate how often
a prediction takes a particular value for a given real value when
the random forests trained on the top five transitions are used to
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Table 4. Five most informative species pairs for each physical parameter. An X indicates that a species is in the top five for a given parameter.

Molecules nH2 / cm−3 Temperature / K ζ/ζ0 FUV / Habing AV / mag

CO-H2S X X X X
CO-H3O+ X X X
CO-NO X X
HCN-HCN X X
CH2-CO X
NH3-NO X
H3O+-HCO+ X
H3O+-HCN X
H2O-NO X
H2O-H3O+ X
CO-HCS+ X
CH2-H3O+ X
CO-HCO+ X
CO-H2CO X
CO X
CH3CN-CO X
CH2-NH3 X
NO-NO X

Table 5. Mean absolute percentage error when predicting each parame-
ter from its top one, five, and ten features.

Parameter Mean Error
1 5 10

Temperature / K 75.4% 14.8% 7.0%
AV / mag 30.9% 20.9% 16.8%
nH2 / cm−3 223.3% 16.0% 18.3%
ζ/ζ0 521.9% 118.5% 85.4%
R / pc 469.2% 144.3% 103.9%
FUV / Habing 1200.1% 562.8% 489.8%

make predictions. A perfect model would show a dark shaded
region along y=x, and in most cases our predictors follow that
trend very closely.

In the cases of gas temperature, density, and visual extinc-
tion, even the top five features produce good estimates. This can
be seen in Fig. 2 from the fact that the y=x line has many mod-
els, as indicated by the dark shading. The cosmic ray ionization
rate on the other hand is less well constrained, but the uncertainty
should be considered in the context of astronomical observations
as an 85% error means knowing the ionization rate to within a
factor of two to ten, depending on whether the model over- or
underestimates.

However, even considering the large errors that would still be
useful in astronomical applications, the UV field is not well cap-
tured at all. In fact, the UV field is not plotted in Fig. 2 because
the random forest typically predicts the mean value across all
models in the dataset, showing no trend between the predictions
and the value. This is a strategy that machine learning models
often choose when nothing useful can be learned from the data.
The UV field is the parameter with the lowest mutual informa-
tion with the features, so this should be expected. In fact, Table 5
is sorted by the error when using ten features but happens to be
in order of descending mutual information, showing that it is a
useful metric for choosing features.

One interesting aspect of this test is that extending it to the
top ten features produces lower errors in most cases, but the
model actually performs slightly worse in the case of density.

This is due to an overlap in the information contained in the
first five and second five features for this parameter. As a result,
the noise increases with additional features but the information
does not, causing the model to perform worse. This highlights
the problem with using regression models as a method of feature
selection. The behaviour of the random forest algorithm has pro-
duced an artificial drop in fit quality that could lead to incorrect
conclusions about which transitions to measure. In a standard
parameter inference, the uncertainty would not increase, and so
the random forest error is misleading.

An extension of this is that whilst a low error indicates that
the features contain enough information to constrain the param-
eters, they should not be taken as the best possible measure-
ments one could obtain with the features. Even the best sta-
tistical models will perform worse than an appropriate phys-
ical model, and thus fitting measured ratios with UCLCHEM
and RADEX is likely to produce smaller uncertainties than the
random forest predictions. Furthermore, these errors assume no
knowledge of the other physical parameters, beyond what is im-
plicitly contained in the transitions used for the model. However,
there are strong degeneracies between the physical parameters in
these models, which must inflate the uncertainty. Thus, if previ-
ous work or alternative measurements already constrain one or
more physical parameters (as if often the case), measurements
of a HIT’s transitions would likely give better constraints on
their respective parameters than implied by the errors given here.
For example, a density measurement using SO transitions would
likely benefit from constraints on the temperature provided by
previous CO measurements.

4.3. Selecting features

The goal of this work was to find species that are simple to model
and will be effective in determining various physical parameters.
Thus, we present a list of transitions and ratios with their mutual
information scores, having shown that this is an adequate mea-
sure of their usefulness. However, there are some caveats to bear
in mind when selecting targets for observation.

Firstly, features share mutual information not only with the
target parameters but also with each other. This is the reason the
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Fig. 2. Histograms of the predicted against real value of each parameter from the model dataset. Darker areas show more frequent combinations,
and the diagonal line in each plot shows a perfect prediction. The density is sparsely sampled, hence the discrete x axis. The cosmic ray ionization
rate is given in units of ζ0 = 1.3 × 10−17 s−1.

models in Sect. 4.2 use only one ratio per pair of species, and
typically we find extremely high mutual information and Spear-
man correlation coefficients greater than 0.9 between different
ratios of the same pair of species. Thus, adding multiple ratios
from the same pair does not increase the information you have on
the target parameter. Whilst it is beyond the scope of this work to
compute the mutual information of all pairs of features, we sug-
gest that observers favour either transitions from unique species
or transitions with very different excitation conditions when us-
ing the mutual information table to select target transitions.

Secondly, one of our findings is that many ratios of informa-
tive transitions carry much less mutual information than ratios of
relatively uninformative transitions. This finding indicates that
if more than one transition or ratio is to be observed, the best
combination is not obvious. However, the results of our random
forests indicate that combinations of the most individually infor-
mative features do make for effective probes of a physical pa-
rameter even if they are not the best possible combination.

Finally, we have taken no mitigating steps to ensure that all
the ratios in our feature list are mutually observable across a
wide range of transitions. We argue that this should not be a
problem on two grounds. First, the mutual information score
will be small if one transition is approximately zero across a
large area of parameter space. When one transition is most of-
ten below the noise level, the ratio will be very large or very
small across a large area of parameter space, and therefore it
would have low mutual information with the physical parame-
ters. Thus, any highly ranked ratio must vary strongly. Second,
the noise we add to all intensities before calculating the mutual
information would remove any feature that typically has a small

enough flux to be noise dominated. Therefore, it is likely that
any highly ranked ratio is between transitions that are often mu-
tually excited. Moreover, one transition being below the noise
level should be informative in itself.

4.4. Limitations of the models

In this work we use a modelling approach that assumes an ob-
ject can be modelled using one or more single-point chemi-
cal models, each coupled to a simple radiative transfer or lo-
cal thermodynamic equilibrium model to produce the observed
emission. Despite being highly simplified, these assumptions are
commonly used to model objects as diverse as molecular clouds
(Vidal & Wakelam 2018), pre-stellar cores (Belloche et al. 2016;
Vasyunin et al. 2017; Jin & Garrod 2020), protostellar disks
(Booth et al. 2021), and extragalactic environments (Aladro et al.
2013; Harada et al. 2021; Holdship et al. 2021). In principle,
where one would consider this modelling appropriate for an ob-
ject, the analysis in this work allows one to plan observations
to maximize information gain on the gas conditions. However,
there are additional shortcomings to our model data that may
limit the usefulness of this analysis even in those cases, and they
require additional discussion.

The list of HITs is entirely dependent on our chemical mod-
elling, which only considers static conditions. For objects such
as hot cores where the conditions change on timescales much
smaller than the convergence time of the HITs (see Table 3), the
history independence will fail and successful modelling will still
depend on reasonable starting abundances. Moreover, the most
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useful probes of the gas conditions in these objects may differ
from those presented here.

The computed mutual information scores are more complex
because they depend on both the chemical and radiative transfer
models. From a chemical modelling perspective, a key issue is
that we assume our gas conditions are independent when, in real-
ity, they are not. Of particular note is the gas temperature, which
is calculated as a function of the other inputs in thermochemi-
cal models. Thus, our grid covers some areas of parameter space
that are not physically possible. If the grid were restricted to only
include parameter sets that are achievable by a thermochemical
code, then the ranking of features may change.

Finally, RADEX is an effective but simple radiative transfer
program. The large velocity gradient method fails at high opti-
cal depth (van der Tak et al. 2007), and therefore very optically
thick lines may be less informative than indicated in this work.
This is of particular concern for CO, for which many transitions
appear in the top feature lists for multiple physical parameters as
its emission is often optically thick. However, due to how com-
monly CO lines are targeted, an observer is likely to know in
advance whether a CO line will be optically thick and can thus
exclude it from consideration when selecting transitions.

Finally, RADEX does not include treatment for masing, in-
frared pumping, or the overlap of spectral lines from differ-
ent molecules. As such, if any of these effects are expected to
strongly affect the intensity of a molecular line in a specific ob-
ject, the intensity of that line may not be as informative about the
physical conditions as our modelling would indicate.

5. Conclusions

In this work we have used chemical and radiative transfer mod-
elling to build a large dataset of synthetic molecular transition
fluxes across a wide range of physical parameters. By using dif-
ferent gas histories and comparing final abundances, we have
identified ‘HITs’: the species that most quickly forget their his-
tory, making them simple to model. We then used the mutual in-
formation between the line intensities of our HITs and the phys-
ical parameters to determine which transitions are most useful
for constraining the gas conditions of an astrophysical system.

By defining a HIT as a species whose abundance varies by
less than 0.5 dex after 1 MYr across a large range of physical
conditions (80% of our parameter grid), we find 43 HITs and
were able to calculate the line intensities for 23 of them using
RADEX. We find that our HITs typically forget their history in
less than 0.1 MYr.

From the mutual information between the HIT transition in-
tensities and the physical parameters, we provide a list of 19
pairs of species that have highly informative transition ratios for
measuring at least one physical parameter.

We demonstrate the effectiveness of this method of line se-
lection by training random forest regressors to predict the phys-
ical parameters using the most informative line ratios from our
dataset. We show that small errors can be obtained on most phys-
ical parameters by choosing lines based on their mutual informa-
tion with the target physical parameter.

We find that many highly ranked features have a large
amount of information in common with each other. Therefore,
efficient line selection would consider only lines that have low
mutual information with previously selected lines as well as high
mutual information with the target parameter. In future work, we
will find an efficient method to filter on this metric and provide
an online tool for observation planning.
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