22 research outputs found

    Impaired nutrient signaling and body weight control in a Na⁺ neutral amino acid cotransporter (Slc6a19)-deficient mouse

    Get PDF
    Amino acid uptake in the intestine and kidney is mediated by a variety of amino acid transporters. To understand the role of epithelial neutral amino acid uptake in whole body homeostasis, we analyzed mice lacking the apical broad-spectrum neutral (0) amino acid transporter BᴼAT1 (Slc6a19). A general neutral aminoaciduria was observed similar to human Hartnup disorder which is caused by mutations in SLC6A19. Na⁺ -dependent uptake of neutral amino acids into the intestine and renal brush-border membrane vesicles was abolished. No compensatory increase of peptide transport or other neutral amino acid transporters was detected. Mice lacking BᴼAT1 showed a reduced body weight. When adapted to a standard 20% protein diet, BᴼAT1-deficient mice lost body weight rapidly on diets containing 6 or 40% protein. Secretion of insulin in response to food ingestion after fasting was blunted. In the intestine, amino acid signaling to the mammalian target of rapamycin (mTOR) pathway was reduced, whereas the GCN2/ATF4 stress response pathway was activated, indicating amino acid deprivation in epithelial cells. The results demonstrate that epithelial amino acid uptake is essential for optimal growth and body weight regulation.This work was supported by National Health and Medical Research Council Grant 525415, Australian Research Council Grant DP0877897, University of Sydney Bridging Grant RIMS2009-02579), and by an anonymous foundatio

    Melorheostosis of the foot

    No full text
    A 48-year old male patient of Arabic origin presented to the orthopedic consultation with a history of slow progressive pain, joint stiffness and swelling of the left foot. Local tenderness was present and a painful, hard mass was clearly palpable. Conventional radiography (Fig. A) revealed undulating and sclerotic enlarged areas (candle wax-appearance) in the lateral cuneiform bone, the third metatarsal bone and the proximal, intermediate and distal phalanx bone of the third row. Cortical hyperostosis was also apparent in the middle phalanx and metatarsal bone of the second row. Areas of extraosseous bone formation could be seen, most clearly adjacent to the metatarsal head and the middle phalanx of the third row. A diagnosis of melorheostosis was made. A CT-scan, which is not strictly required to make the diagnosis, confirmed the radiographic findings (Fig. B). The patient was treated conservatively

    Renal imino acid and glycine transport system ontogeny and involvement in developmental iminoglycinuria

    No full text
    Renal maturation occurs post-natally in many species and reabsorption capacity at birth can vary substantially from the mature kidney. However, little is known regarding the maturation of amino acid transport mechanisms, despite the well-known physiological state of developmental iminoglycinuria. Commonly seen during early infancy, developmental iminoglycinuria is a transient version of the persistent inherited form of the disorder, referred to as iminoglycinuria, and manifests as a urinary hyperexcretion of proline, hydroxyproline and glycine. The transporters involved in developmental iminoglycinuria and their involvement in the improvement of renal reabsorption capacity remain unknown. qPCR (quantitative real-time PCR) and Western blot analysis in developing mouse kidney revealed that the expression of Slc6a18, Slc6a19, Slc6a20a and Slc36a2 was lower at birth (approx. 3.4-, 5.0-, 2.4- and 3.0-fold less than adult kidney by qPCR respectively) and increased during development. Furthermore, immunofluorescence confocal microscopy demonstrated the absence of apical expression of Slc6a18, Slc6a19, Slc6a20a and the auxiliary protein collectrin in kidneys of mice at birth. This correlated with the detection of iminoglycinuria during the first week of life. Iminoglycinuria subsided (proline reduction preceded glycine) in the second week of life, which correlated with an increase in the expression of Slc6a19 and Slc6a20a. Mice achieved an adult imino acid and glycine excretion profile by the fourth week, at which time the expression level of all transporters was comparable with adult mice. In conclusion, these results demonstrate the delayed expression and maturation of Slc6a18, Slc6a19, Slc6a20a and Slc36a2 in neonatal mice and thus the molecular mechanism of developmental iminoglycinuria. © The Authors

    Loss of solute carriers in T cell mediated rejection in mouse and human kidneys: An active epithelial injury-repair response

    No full text
    T cell-mediated rejection of kidney allografts causes epithelial deterioration, manifested by tubulitis, but the mechanism remains unclear. We hypothesized that interstitial inflammation triggers a stereotyped epithelial response similar to that triggered by other types of injury such as ischemia-reperfusion. We identified solute carrier transcripts with decreased expression in mouse allografts, and compared their behavior in T cell-mediated rejection to native kidneys with ischemic acute tubular necrosis (ATN). Average loss of solute carrier expression was similar in ATN (77%) and T cell-mediated rejection (75%) with high correlation of individual transcripts. Immunostaining of SLC6A19 confirmed loss of proteins. Analysis of human kidney transplant biopsies confirmed that T cell-mediated rejection and ATN showed similar loss of solute carrier mRNAs. The loss of solute carrier expression was weakly correlated with interstitial inflammation, but kidneys with ATN showed decreased solute carriers despite minimal inflammation. Loss of renal function correlated better with decreased solute carrier expression than with histologic lesions (r = 0.396, p < 0.001). Thus the loss of epithelial transcripts in rejection is not a unique consequence of T cell-mediated rejection but an active injury-repair response of epithelium, triggered by rejection but also by other injury mechanisms. © 2010 The American Society of Transplantation and the American Society of Transplant Surgeons

    Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids

    No full text
    While pluripotent stem cell-derived kidney organoids are now being used to model renal disease, the proximal nephron remains immature with limited evidence for key functional solute channels. This may reflect early mispatterning of the nephrogenic mesenchyme and/or insufficient maturation. Here we show that enhanced specification to metanephric nephron progenitors results in elongated and radially aligned proximalised nephrons with distinct S1 - S3 proximal tubule cell types. Such PT-enhanced organoids possess improved albumin and organic cation uptake, appropriate KIM-1 upregulation in response to cisplatin, and improved expression of SARS-CoV-2 entry factors resulting in increased viral replication. The striking proximo-distal orientation of nephrons resulted from localized WNT antagonism originating from the organoid stromal core. PT-enhanced organoids represent an improved model to study inherited and acquired proximal tubular disease as well as drug and viral responses

    Renal subcapsular transplantation of PSC-derived kidney organoids induces neo-vasculogenesis and significant glomerular and tubular maturation in vivo

    Get PDF
    Human pluripotent stem cell (hPSC)-derived kidney organoids may facilitate disease modeling and the generation of tissue for renal replacement. Long-term application, however, will require transferability between hPSC lines and significant improvements in organ maturation. A key question is whether time or a patent vasculature is required for ongoing morphogenesis. Here, we show that hPSC-derived kidney organoids, derived in fully defined medium conditions and in the absence of any exogenous vascular endothelial growth factor, develop host-derived vascularization. In vivo imaging of organoids under the kidney capsule confirms functional glomerular perfusion as well as connection to pre-existing vascular networks in the organoids. Wide-field electron microscopy demonstrates that transplantation results in formation of a glomerular basement membrane, fenestrated endothelial cells, and podocyte foot processes. Furthermore, compared with non-transplanted organoids, polarization and segmental specialization of tubular epithelium are observed. These data demonstrate that functional vascularization is required for progressive morphogenesis of human kidney organoids

    Loss-of-function mutations in the glutamate transporter SLC1A1 cause human dicarboxylic aminoaciduria

    No full text
    Solute carrier family 1, member 1 (SLC1A1; also known as EAAT3 and EAAC1) is the major epithelial transporter of glutamate and aspartate in the kidneys and intestines of rodents. Within the brain, SLC1A1 serves as the predominant neuronal glutamate transporter and buffers the synaptic release of the excitatory neurotransmitter glutamate within the interneuronal synaptic cleft. Recent studies have also revealed that polymorphisms in SLC1A1 are associated with obsessive-compulsive disorder (OCD) in early-onset patient cohorts. Here we report that SLC1A1 mutations leading to substitution of arginine to tryptophan at position 445 (R445W) and deletion of isoleucine at position 395 (I395del) cause human dicarboxylic aminoaciduria, an autosomal recessive disorder of urinary glutamate and aspartate transport that can be associated with mental retardation. These mutations of conserved residues impeded or abrogated glutamate and cysteine transport by SLC1A1 and led to near-absent surface expression in a canine kidney cell line. These findings provide evidence that SLC1A1 is the major renal transporter of glutamate and aspartate in humans and implicate SLC1A1 in the pathogenesis of some neurological disorders
    corecore