326 research outputs found

    Multispectral Quantum Dots-in-a-Well Infrared Detectors Using Plasmon Assisted Cavities

    Get PDF
    We present the design, fabrication, and characterization, of multi-spectral quantum dots-in-a-well (DWELL) infrared detectors, by the integration of a surface plasmon assisted resonant cavity with the infrared detector. A square lattice and rectangular lattice cavity, formed by modifying the square lattice have been used in this design. By confining the resonant mode of the cavity to detector active region, the detector responsivity and detectivity have been improved by a factor of 5. A spectral tuning of 5.5 to 7.2 ÎŒm has been observed in the peak response of the detectors, by tuning the lattice constant of the cavity. Simulations indicate the presence of two modes of absorption, which have been experimentally verified. The use of a rectangular lattice predicts highly polarization sensitive modes in x- and y-direction, which are observed in fabricated detectors. A peak detectivity of 3.1 x 10^9 cm √(Hz)/W was measured at 77 K. This design offers a cost-effective and simple method of encoding spectral and polarization information, in infrared focal plane arrays

    Observation of SN1987A by neutrino light

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27269/1/0000284.pd

    Auditor Perceptions of Audit Workloads, Audit Quality, and Job Satisfaction

    Get PDF
    In this study, we use a survey instrument to obtain perspectives from over 700 auditors about present-day audit workloads and the relationship between audit workloads, audit quality, and job satisfaction. Our findings indicate that auditors are working, on average, five hours per week above the threshold at which they believe audit quality begins to deteriorate and often 20 hours above this threshold at the peak of busy season. Survey respondents perceive deadlines and staffing shortages as two of the primary reasons for high workloads and further believe that high workloads result in decreased audit quality via compromised audit procedures (including taking shortcuts), impaired audit judgment (including reduced professional skepticism), and difficulty retaining staff with appropriate knowledge and skills. We also find that auditors’ job satisfaction and their excitement about auditing as a career are negatively impacted by high audit workload, particularly when the workload exceeds a threshold that is perceived to impair audit quality. Overall, our findings provide support for the PCAOB’s recent concern that heavy workloads are continuing to threaten audit quality and suggest that the primary drivers of workload (i.e., deadlines and staffing problems) might be the actual “root cause” of workload-related audit deficiencies

    Redox and pH gradients drive amino acid synthesis in iron oxyhydroxide mineral systems

    Get PDF
    Iron oxyhydroxide minerals, known to be chemically reactive and significant for elemental cycling, are thought to have been abundant in early-Earth seawater, sediments, and hydrothermal systems. In the anoxic Fe^(2+)-rich early oceans, these minerals would have been only partially oxidized and thus redox-active, perhaps able to promote prebiotic chemical reactions. We show that pyruvate, a simple organic molecule that can form in hydrothermal systems, can undergo reductive amination in the presence of mixed-valence iron oxyhydroxides to form the amino acid alanine, as well as the reduced product lactate. Furthermore, geochemical gradients of pH, redox, and temperature in iron oxyhydroxide systems affect product selectivity. The maximum yield of alanine was observed when the iron oxyhydroxide mineral contained 1:1 Fe(II):Fe(III), under alkaline conditions, and at moderately warm temperatures. These represent conditions that may be found, for example, in iron-containing sediments near an alkaline hydrothermal vent system. The partially oxidized state of the precipitate was significant in promoting amino acid formation: Purely ferrous hydroxides did not drive reductive amination but instead promoted pyruvate reduction to lactate, and ferric hydroxides did not result in any reaction. Prebiotic chemistry driven by redox-active iron hydroxide minerals on the early Earth would therefore be strongly affected by geochemical gradients of E_h, pH, and temperature, and liquid-phase products would be able to diffuse to other conditions within the sediment column to participate in further reactions

    Effects of Geochemical and Environmental Parameters on Abiotic Organic Chemistry Driven by Iron Hydroxide Minerals

    Get PDF
    Geological conditions play a significant role in prebiotic/abiotic organic chemistry, especially when reactive minerals are present. Previous studies of the prebiotic synthesis of amino acids and other products in mineral‐containing systems have shown that a diverse array of compounds can be produced, depending on the experimental conditions. However, these previous experiments have not simulated the effects of varying geochemical conditions, in which factors such as pH, iron redox state, or chemical concentrations may vary over time and space in a natural environment. In geochemical systems that contain overlapping gradients, many permutations of individual conditions could exist and affect the outcome of an organic reaction network. We investigated reactions of pyruvate and glyoxylate, two compounds that are central to the emergence of metabolism, in simulated geological gradients of redox, pH, and ammonia concentration. Our results show that the positioning of pyruvate/glyoxylate reactions in this environmental parameter space determines the organic product distribution that results. Therefore, the distribution pattern of amino acids and alpha‐hydroxy acids produced prebiotically in a system reflects the specific reaction conditions, and would be distinct at various locations in an environment depending on local geochemistry. This is significant for origin of life chemistry in which the composition and function of oligomers could be affected by the environmentally driven distribution of monomers available. Also, for astrobiology and planetary science where organic distribution patterns are sometimes considered as a possible biosignature, it is important to consider environmentally driven abiotic organic reactions that might produce similar effects

    Demonstration of Bias-Controlled Algorithmic Tuning of Quantum Dots in a Well (DWELL) MidIR Detectors

    Get PDF
    The quantum-confined Stark effect in intersublevel transitions present in quantum-dots-in-a-well (DWELL) detectors gives rise to a midIR spectral response that is dependent upon the detector\u27s operational bias. The spectral responses resulting from different biases exhibit spectral shifts, albeit with significant spectral overlap. A postprocessing algorithm was developed by Sakoglu that exploited this bias-dependent spectral diversity to predict the continuous and arbitrary tunability of the DWELL detector within certain limits. This paper focuses on the experimental demonstration of the DWELL-based spectral tuning algorithm. It is shown experimentally that it is possible to reconstruct the spectral content of a target electronically without using any dispersive optical elements for tuning, thereby demonstrating a DWELL-based algorithmic spectrometer. The effects of dark current, detector temperature, and bias selection on the tuning capability are also investigated experimentally

    L Band Brightness Temperature Observations Over a Corn Canopy During the Entire Growth Cycle

    Get PDF
    During a field campaign covering the 2002 corn growing season, a dual polarized tower mounted L-band (1.4 GHz) radiometer (LRAD) provided brightness temperature (T(sub B)) measurements at preset intervals, incidence and azimuth angles. These radiometer measurements were supported by an extensive characterization of land surface variables including soil moisture, soil temperature, vegetation biomass, and surface roughness. During the period from May 22, 2002 to August 30, 2002 a range of vegetation water content (W) of 0.0 to 4.3 kg/square m, ten days of radiometer and ground measurements were available. Using this data set, the effects of corn vegetation on surface emissions are investigated by means of a semi-empirical radiative transfer model. Additionally, the impact of roughness on the surface emission is quantified using T(sub B) measurements over bare soil conditions. Subsequently, the estimated roughness parameters, ground measurements and horizontally (H)-polarized T(sub B) are employed to invert the H-polarized transmissivity (gamma-h) for the monitored corn growing season

    Thermodynamic Stability of the Transcription Regulator PaaR2 from Escherichia coli O157:H7

    Get PDF
    PaaR2 is a putative transcription regulator encoded by a three-component parDE-like toxin-antitoxin module from Escherichia coli O157:H7. Although this module’s toxin, antitoxin, and toxin-antitoxin complex have been more thoroughly investigated, little remains known about its transcription regulator PaaR2. Using a wide range of biophysical techniques (circular dichroism spectroscopy, size-exclusion chromatography-multiangle laser light scattering, dynamic light scattering, small-angle x-ray scattering, and native mass spectrometry), we demonstrate that PaaR2 mainly consists of α-helices and displays a concentration-dependent octameric build-up in solution and that this octamer contains a global shape that is significantly nonspherical. Thermal unfolding of PaaR2 is reversible and displays several transitions, suggesting a complex unfolding mechanism. The unfolding data obtained from spectroscopic and calorimetric methods were combined into a unifying thermodynamic model, which suggests a five-state unfolding trajectory. Furthermore, the model allows the calculation of a stability phase diagram, which shows that, under physiological conditions, PaaR2 mainly exists as a dimer that can swiftly oligomerize into an octamer depending on local protein concentrations. These findings, based on a thorough biophysical and thermodynamic analysis of PaaR2, may provide important insights into biological function such as DNA binding and transcriptional regulation
    • 

    corecore