122 research outputs found
Recommended from our members
Feasibility of High Yield / High Gain NIF Capsules
Our original ignition ''point designs'' (circa 1992) for the National Ignition Facility (NIF) were made energetically conservative to provide margin for uncertainties in laser absorption, x-ray conversion efficiency and hohlraum-capsule coupling. Since that time, extensive experiments on Nova and Omega and their related analysis indicate that NIF coupling efficiency may be almost ''as good as we could hope for''. Given close agreement between experiment and theory/modeling, we can credibly explore target enhancements which couple more of NIF's energy to an ignition capsule. We find that 3-4X increases in absorbed capsule energy appear possible, providing a potentially more robust target and {approx}10X increase in capsule yield
Non-equilibrium dynamics in an interacting nanoparticle system
Non-equilibrium dynamics in an interacting Fe-C nanoparticle sample,
exhibiting a low temperature spin glass like phase, has been studied by low
frequency ac-susceptibility and magnetic relaxation experiments. The
non-equilibrium behavior shows characteristic spin glass features, but some
qualitative differences exist. The nature of these differences is discussed.Comment: 7 pages, 11 figure
Recommended from our members
High fluence 1.05 {mu}m performance tests using 20 ns shaped pulses on the Beamlet prototype laser
Beamlet is a single beamline, nearly full scale physics prototype of the 192 beam Nd:Glass laser driver of the National Ignition Facility. It is used to demonstrate laser performance of the NIF multipass amplifier architecture. Initial system characterization tests have all been performed at pulse durations less than 10 ns. Pinhole closure and modulation at the end of long pulses are a significant concern for the operation of NIF. We recently demonstrated the generation, amplification and propagation of high energy pulses temporally shaped to mimic 20 ns long ignition pulse shapes at fluence levels exceeding the nominal NIF design requirements for Inertial Confinement Fusion by Indirect Drive. We also demonstrated the effectiveness of a new conical pinhole design used in the transport spatial filter to mitigate plasma closure effects and increase closure time to exceed the duration of the 20 ns long pulse
- …