2,024 research outputs found

    The alphaalphas2alpha alpha_s^2 corrections to the first moment of the polarized virtual photon structure function g1gamma(x,Q2,P2)g_1^gamma(x,Q^2,P^2)

    Full text link
    We present the next-to-next-to-leading order (alphaalphas2alpha alpha_s^2) corrections to the first moment of the polarized virtual photon structure function g1gamma(x,Q2,P2)g_1^gamma(x,Q^2,P^2) in the kinematical region Lambda2llP2llQ2Lambda^2 ll P^2 ll Q^2, where −Q2(−P2)-Q^2(-P^2) is the mass squared of the probe (target) photon and LambdaLambda is the QCD scale parameter. In order to evaluate the three-loop-level photon matrix element of the flavor singlet axial current, we resort to the Adler-Bardeen theorem for the axial anomaly and we calculate in effect the two-loop diagrams for the photon matrix element of the gluon operator. The alphaalphas2alpha alpha_s^2 corrections are found to be about 3% of the sum of the leading order (alphaalpha) andthe next-to-leading order (alphaalphasalpha alpha_s) contributions, when Q2=30sim100rmGeV2Q^2=30 sim 100 {rm GeV}^2and P2=3rmGeV2P^2=3{rm GeV}^2, and the number of active quark flavors nfn_f is three to five.Comment: 21 page

    Virtual photon structure functions and positivity constraints

    Full text link
    We study the three positivity constraints among the eight virtual photon structure functions, derived from the Cauchy-Schwarz inequality and which are hence model-independent. The photon structure functions obtained from the simple parton model show quite different behaviors in a massive quark or a massless quark case, but they satisfy, in both cases, the three positivity constraints. We then discuss an inequality which holds among the unpolarized and polarized photon structure functions F1ÎłF_1^\gamma, g1Îłg_1^\gamma and WTTτW_{TT}^\tau, in the kinematic region Λ2â‰ȘP2â‰ȘQ2\Lambda^2\ll P^2 \ll Q^2, where −Q2(−P2)-Q^2 (-P^2) is the mass squared of the probe (target) photon, and we examine whether this inequality is satisfied by the perturbative QCD results.Comment: 24 pages, 13 eps figure

    Adaptive Optimization of Wave Functions for Fermion Lattice Models

    Get PDF
    We present a simulation algorithm for Hamiltonian fermion lattice models. A guiding trial wave function is adaptively optimized during Monte Carlo evolution. We apply the method to the two dimensional Gross-Neveu model and analyze systematc errors in the study of ground state properties. We show that accurate measurements can be achieved by a proper extrapolation in the algorithm free parameters.Comment: 4 pages, 6 figures (Encapsulated PostScript

    Virtual photon fragmentation functions

    Get PDF
    We introduce operator definitions for virtual photon fragmentation functions, which are needed for reliable calculations of Drell-Yan transverse momentum (QTQ_T) distributions when QTQ_T is much larger than the invariant mass QQ. We derive the evolution equations for these fragmentation functions. We calculate the leading order evolution kernels for partons to fragment into a unpolarized as well as a polarized virtual photon. We find that fragmentation functions to a longitudinally polarized virtual photon are most important at small zz, and the fragmentation functions to a transversely polarized virtual photon dominate the large zz region. We discuss the implications of this finding to the J/ψ\psi mesons' polarization at large transverse momentum.Comment: Latex, 19 pages including 6 figures. An error in the first version has been corrected, and references update

    Relating the Komargodski-Seiberg and Akulov-Volkov actions: Exact nonlinear field redefinition

    Full text link
    This paper constructs an exact field redefinition that maps the Akulov-Volkov action to that recently studied by Komargodski and Seiberg in arXiv:0907.2441. It is also shown that the approach advocated in arXiv:1003.4143v2 and arXiv:1009.2166 for deriving such a relationship is inconsistent.Comment: 8 pages; V2: a reference added, minor changes mad

    Spin Structure Function of the Virtual Photon Beyond the Leading Order in QCD

    Get PDF
    Polarized photon structure can be studied in the future polarized e+e−e^{+}e^{-} colliding-beam experiments. We investigate the spin-dependent structure function of the virtual photon g1Îł(x,Q2,P2)g_1^{\gamma}(x,Q^2,P^2), in perturbative QCD for Λ2â‰ȘP2â‰ȘQ2\Lambda^2 \ll P^2 \ll Q^2, where −Q2-Q^2 (−P2-P^2) is the mass squared of the probe (target) photon. The analysis is performed to next-to-leading order in QCD. We particularly emphasize the renormalization scheme independence of the result.The non-leading corrections significantly modify the leading log result, in particular, at large xx as well as at small xx. We also discuss the non-vanishing first moment sum rule of g1Îłg_1^\gamma, where O(αs){\cal O}(\alpha_s) corrections are computed.Comment: 39 pages, LaTeX, 6 Postscript Figures, eqsection.sty file include

    Has the QCD RG-Improved Parton Content of Virtual Photons been Observed?

    Get PDF
    It is demonstrated that present e+e−e^+e^- and DIS ep data on the structure of the virtual photon can be understood entirely in terms of the standard `naive' quark--parton model box approach. Thus the QCD renormalization group (RG) improved parton distributions of virtual photons, in particular their gluonic component, have not yet been observed. The appropriate kinematical regions for their future observation are pointed out as well as suitable measurements which may demonstrate their relevance.Comment: 24 pages, LaTeX, 5 figure

    A dopaminergic switch for fear to safety transitions

    Get PDF
    Overcoming aversive emotional memories requires neural systems that detect when fear responses are no longer appropriate so that they can be extinguished. The midbrain ventral tegmental area (VTA) dopamine system has been implicated in reward and more broadly in signaling when a better-than-expected outcome has occurred. This suggests that it may be important in guiding fear to safety transitions. We report that when an expected aversive outcome does not occur, activity in midbrain dopamine neurons is necessary to extinguish behavioral fear responses and engage molecular signaling events in extinction learning circuits. Furthermore, a specific dopamine projection to the nucleus accumbens medial shell is partially responsible for this effect. In contrast, a separate dopamine projection to the medial prefrontal cortex opposes extinction learning. This demonstrates a novel function for the canonical VTA-dopamine reward system and reveals opposing behavioral roles for different dopamine neuron projections in fear extinction learning
    • 

    corecore