23 research outputs found
Tracing ancestry with methylation patterns: most crypts appear distantly related in normal adult human colon
BACKGROUND: The ability to discern ancestral relationships between individual human colon crypts is limited. Widely separated crypts likely trace their common ancestors to a time around birth, but closely spaced adult crypts may share more recent common ancestors if they frequently divide by fission to form clonal patches. Alternatively, adult crypts may be long-lived structures that infrequently divide or die. METHODS: Methylation patterns (the 5' to 3' order of methylation) at CpG sites that exhibit random changes with aging were measured from isolated crypts by bisulfite genomic sequencing. This epigenetic drift may be used to infer ancestry because recently related crypts should have similar methylation patterns. RESULTS: Methylation patterns were different between widely separated ("unrelated") crypts greater than 15 cm apart. Evidence for a more recent relationship between directly adjacent or branched crypts could not be found because their methylation pattern distances were not significantly different than widely separated crypt pairs. Methylation patterns are essentially equally different between two adult human crypts regardless of their relative locations. CONCLUSIONS: Methylation patterns appear to record somatic cell trees. Starting from a single cell at conception, sequences replicate and may drift apart. Most adult human colon crypts appear to be long-lived structures that become mosaic with respect to methylation during aging
Expansion of Intestinal Epithelial Stem Cells during Murine Development
Murine small intestinal crypt development is initiated during the first postnatal week. Soon after formation, overall increases in the number of crypts occurs through a bifurcating process called crypt fission, which is believed to be driven by developmental increases in the number of intestinal stem cells (ISCs). Recent evidence suggests that a heterogeneous population of ISCs exists within the adult intestine. Actively cycling ISCs are labeled by Lgr5, Ascl2 and Olfm4; whereas slowly cycling or quiescent ISC are marked by Bmi1 and mTert. The goal of this study was to correlate the expression of these markers with indirect measures of ISC expansion during development, including quantification of crypt fission and side population (SP) sorting. Significant changes were observed in the percent of crypt fission and SP cells consistent with ISC expansion between postnatal day 14 and 21. Quantitative real-time polymerase chain reaction (RT-PCR) for the various ISC marker mRNAs demonstrated divergent patterns of expression. mTert surged earliest, during the first week of life as crypts are initially being formed, whereas Lgr5 and Bmi1 peaked on day 14. Olfm4 and Ascl2 had variable expression patterns. To assess the number and location of Lgr5-expressing cells during this period, histologic sections from intestines of Lgr5-EGFP mice were subjected to quantitative analysis. There was attenuated Lgr5-EGFP expression at birth and through the first week of life. Once crypts were formed, the overall number and percent of Lgr5-EGFP positive cells per crypt remain stable throughout development and into adulthood. These data were supported by Lgr5 in situ hybridization in wild-type mice. We conclude that heterogeneous populations of ISCs are expanding as measured by SP sorting and mRNA expression at distinct developmental time points
Paneth cell - rich regions separated by a cluster of Lgr5+ cells initiate crypt fission in the intestinal stem cell niche
The crypts of the intestinal epithelium house the stem cells that ensure the continual renewal of the epithelial cells that line the intestinal tract. Crypt number increases by a process called crypt fission, the division of a single crypt into two daughter crypts. Fission drives normal tissue growth and maintenance. Correspondingly, it becomes less frequent in adulthood. Importantly, fission is reactivated to drive adenoma growth. The mechanisms governing fission are poorly understood. However, only by knowing how normal fission operates can cancer-associated changes be elucidated. We studied normal fission in tissue in three dimensions using high-resolution imaging and used intestinal organoids to identify underlying mechanisms. We discovered that both the number and relative position of Paneth cells and Lgr5+ cells are important for fission. Furthermore, the higher stiffness and increased adhesion of Paneth cells are involved in determining the site of fission. Formation of a cluster of Lgr5+ cells between at least two Paneth-cell-rich domains establishes the site for the upward invagination that initiates fission
Variation in crypt size and its influence on the analysis of epithelial cell proliferation in the intestinal crypt.
The standard model of epithelial cell renewal in the intestine proposes a gradual transition between the region of the crypt containing actively proliferating cells and that containing solely terminally differentiating cells (Cairnie, Lamerton and Steel, 1965 a, b). The experimental justification for this conclusion was the gradual decrease towards the crypt top of the measured labeling and mitotic indices. Recently, however, we have proposed that intestinal crypts normally undergo a replicative cycle so that at any time in any region of the intestine, crypts will be found to have a wide range of sizes. We show here that if this intrinsic size variation is taken into account, then a sharp transition between the proliferative and nonproliferative compartments of individual intestinal crypts is consistent with the labeling and mitotic index distributions of mouse and rat jejunal crypts. Thus there is no need to invoke the region of gradual transition from proliferating to nonproliferating cells as is done in the standard model. The position of this sharp transition is estimated for both the mouse and rat. Experiments to further test our model are suggested and the significance of the results discussed
The crypt cycle. Crypt and villus production in the adult intestinal epithelium.
We propose a model for the growth of individual crypts that is able to account for the observed changes in the number of cells in crypts under normal conditions, after irradiation, and after 30% resection. Parameter values for this model are estimated both for mouse and man, and detailed predictions of crypt growth rates are made. This model does not predict a steady-state crypt size; rather it suggests that crypts grow until they bifurcate. We therefore propose a crypt cycle (analogous to the cell cycle) and present evidence that most if not all crypts in the adult mouse are cycling asynchronously and independently. This evidence consists of four experiments that indicate that branching crypts are randomly distributed over the intestinal epithelium, that the plane of bifurcation of branching crypts is randomly oriented with respect to the villus base, and that the size distribution of crypts is consistent with an expanding crypt population. We also report for the first time evidence of villus production in the adult mouse intestinal epithelium. We conclude that the crypt and villus populations in the adult mouse are not in a steady state