19 research outputs found

    Sex Differences in the Epigenome: A Cause or Consequence of Sexual Differentiation of the Brain?

    Get PDF
    Females and males display differences in neural activity patterns, behavioral responses, and incidence of psychiatric and neurological diseases. Sex differences in the brain appear throughout the animal kingdom and are largely a consequence of the physiological requirements necessary for the distinct roles of the two sexes in reproduction. As with the rest of the body, gonadal steroid hormones act to specify and regulate many of these differences. It is thought that transient hormonal signaling during brain development gives rise to persistent sex differences in gene expression via an epigenetic mechanism, leading to divergent neurodevelopmental trajectories that may underlie sex differences in disease susceptibility. However, few genes with a persistent sex difference in expression have been identified, and only a handful of studies have employed genome-wide approaches to assess sex differences in epigenomic modifications. To date, there are no confirmed examples of gene regulatory elements that direct sex differences in gene expression in the brain. Here, we review foundational studies in this field, describe transcriptional mechanisms that could act downstream of hormone receptors in the brain, and suggest future approaches for identification and validation of sex-typical gene programs. We propose that sexual differentiation of the brain involves self-perpetuating transcriptional states that canalize sex-specific development

    Epithelial cell integrin beta1 is required for developmental angiogenesis in the pituitary gland

    Get PDF
    As a key component of the vertebrate neuroendocrine system, the pituitary gland relies on the progressive and coordinated development of distinct hormone-producing cell types and an invading vascular network. The molecular mechanisms that drive formation of the pituitary vasculature, which is necessary for regulated synthesis and secretion of hormones that maintain homeostasis, metabolism, and endocrine function, remain poorly understood. Here, we report that expression of integrin beta1 in embryonic pituitary epithelial cells is required for angiogenesis in the developing mouse pituitary gland. Deletion of pituitary epithelial integrin beta1 before the onset of angiogenesis resulted in failure of invading endothelial cells to recruit pericytes efficiently, whereas deletion later in embryogenesis led to decreased vascular density and lumen formation. In both cases, lack of epithelial integrin beta1 was associated with a complete absence of vasculature in the pituitary gland at birth. Within pituitary epithelial cells, integrin beta1 directs a large transcriptional program that includes components of the extracellular matrix and associated signaling factors that are linked to the observed non-cell-autonomous effects on angiogenesis. We conclude that epithelial integrin beta1 functions as a critical and canonical regulator of developmental angiogenesis in the pituitary gland, thus providing insight into the long-standing systems biology conundrum of how vascular invasion is coordinated with tissue development

    Copolymerization of single-cell nucleic acids into balls of acrylamide gel

    Get PDF
    We show the use of 5'-Acrydite oligonucleotides to copolymerize single-cell DNA or RNA into balls of acrylamide gel (BAGs). Combining this step with split-and-pool techniques for creating barcodes yields a method with advantages in cost and scalability, depth of coverage, ease of operation, minimal cross-contamination, and efficient use of samples. We perform DNA copy number profiling on mixtures of cell lines, nuclei from frozen prostate tumors, and biopsy washes. As applied to RNA, the method has high capture efficiency of transcripts and sufficient consistency to clearly distinguish the expression patterns of cell lines and individual nuclei from neurons dissected from the mouse brain. By using varietal tags (UMIs) to achieve sequence error correction, we show extremely low levels of cross-contamination by tracking source-specific SNVs. The method is readily modifiable, and we will discuss its adaptability and diverse applications

    Gene regulatory mechanisms underlying sex differences in brain development and psychiatric disease

    No full text
    The sexual differentiation of the mammalian nervous requires the precise coordination of the temporal and spatial regulation of gene expression in diverse cell types. Sex hormones act at multiple developmental time points to specify sex-typical differentiation during embryonic and early development and to coordinate subsequent responses to gonadal hormones later in life by establishing sex-typical patterns of epigenetic modifications across the genome. Thus, mutations associated with neuropsychiatric conditions may result in sexually dimorphic symptoms by acting on different neural substrates or chromatin landscapes in males and females. Finally, as stress hormone signaling may directly alter the molecular machinery that interacts with sex hormone receptors to regulate gene expression, the contribution of chronic stress to the pathogenesis or presentation of mental illness may be additionally different between the sexes. Here, we review the mechanisms that contribute to sexual differentiation in the mammalian nervous system and consider some of the implications of these processes for sex differences in neuropsychiatric conditions

    Signatures of Sex: Sex Differences in Gene Expression in the Vertebrate Brain

    No full text
    Women and men differ in disease prevalence, symptoms, and progression rates for many psychiatric and neurological disorders. As more preclinical studies include both sexes in experimental design, an increasing number of sex differences in physiology and behavior have been reported. In the brain, sex-typical behaviors are thought to result from sex-specific patterns of neural activity in response to the same sensory stimulus or context. These differential firing patterns likely arise as a consequence of underlying anatomic or molecular sex differences. Accordingly, gene expression in the brains of females and males has been extensively investigated, with the goal of identifying biological pathways that specify or modulate sex differences in brain function. However, there is surprisingly little consensus on sex-biased genes across studies and only a handful of robust candidates have been pursued in the follow-up experiments. Furthermore, it is not known how or when sex-biased gene expression originates, as few studies have been performed in the developing brain. Here we integrate molecular genetic and neural circuit perspectives to provide a conceptual framework of how sex differences in gene expression can arise in the brain. We detail mechanisms of gene regulation by steroid hormones, highlight landmark studies in rodents and humans, identify emerging themes, and offer recommendations for future research

    A custody battle for the mind: evidence for extensive imprinting in the brain

    Get PDF
    Relatively few genes (approximately 100) have previously been shown to be imprinted such that their expression in progeny derives from either the maternal or paternal copy. Two recent studies by Gregg et al. (2010a, 2010b) in Science expand this list by an order of magnitude, revealing complex patterns of parent-of-origin bias in gene expression in the brain that are developmentally and regionally restricted, and in many cases, sexually dimorphic

    Gene regulation by gonadal hormone receptors underlies brain sex differences

    Get PDF
    AbstractOestradiol establishes neural sex differences in many vertebrates1–3 and modulates mood, behaviour and energy balance in adulthood4–8. In the canonical pathway, oestradiol exerts its effects through the transcription factor oestrogen receptor-α (ERα)9. Although ERα has been extensively characterized in breast cancer, the neuronal targets of ERα, and their involvement in brain sex differences, remain largely unknown. Here we generate a comprehensive map of genomic ERα-binding sites in a sexually dimorphic neural circuit that mediates social behaviours. We conclude that ERα orchestrates sexual differentiation of the mouse brain through two mechanisms: establishing two male-biased neuron types and activating a sustained male-biased gene expression program. Collectively, our findings reveal that sex differences in gene expression are defined by hormonal activation of neuronal steroid receptors. The molecular targets we identify may underlie the effects of oestradiol on brain development, behaviour and disease.</jats:p

    Paired-like repression/activation in pituitary development

    No full text
    Pituitary gland development is controlled by signals that guide expression of specific combinations of transcription factors that dictate serial determination and differentiation events. One class of factors is paired-like homeodomain factors. Two that have been investigated are the repressor Hex1/Rpx and activator prophet of Pit-1 (Prop-1), which exert selective roles during pituitary development. The opposing actions of these factors provide one aspect of pituitary organogenesis

    Genetic control of pituitary development and hypopituitarism

    No full text
    The pituitary gland functions as a relay between the hypothalamus and peripheral target organs that regulate basic physiological functions, including growth, the stress response, reproduction, metabolism and lactation. The development of the pituitary gland has been studied extensively in mice, and has begun to be explored in zebrafish, an animal model system amenable to forward genetics. Multiple signaling molecules and transcription factors, expressed in overlapping but distinct spatial and temporal patterns, are required at various stages of pituitary development. Defects in this precisely regulated genetic program lead to diverse pituitary dysfunction. The animal models have greatly enhanced our understanding of molecular mechanisms underlying pituitary development in addition to congenital pituitary disorders in humans

    Estrogen masculinizes neural pathways and sex-specific behaviors

    No full text
    Sex hormones are essential for neural circuit development and sex-specific behaviors. Male behaviors require both testosterone and estrogen, but it is unclear how the two hormonal pathways intersect. Circulating testosterone activates the androgen receptor (AR) and is also converted into estrogen in the brain via aromatase. We demonstrate extensive sexual dimorphism in the number and projections of aromatase-expressing neurons. The masculinization of these cells is independent of AR but can be induced in females by either testosterone or estrogen, indicating a role for aromatase in sexual differentiation of these neurons. We provide evidence suggesting that aromatase is also important in activating male-specific aggression and urine marking because these behaviors can be elicited by testosterone in males mutant for AR and in females subjected to neonatal estrogen exposure. Our results suggest that aromatization of testosterone into estrogen is important for the development and activation of neural circuits that control male territorial behaviors
    corecore