27 research outputs found

    Fe-Mg interdiffusion rates in clinopyroxene: Experimental data and implications for Fe-Mg exchange geothermometers

    Get PDF
    Chemical interdiffusion of Fe-Mg along the c-axis [001] in natural diopside crystals (XDi = 0.93) was experimentally studied at ambient pressure, at temperatures ranging from 800 to 1,200 °C and oxygen fugacities from 10-11 to 10-17 bar. Diffusion couples were prepared by ablating an olivine (XFo = 0.3) target to deposit a thin film (20-100 nm) onto a polished surface of a natural, oriented diopside crystal using the pulsed laser deposition technique. After diffusion anneals, compositional depth profiles at the near surface region (~400 nm) were measured using Rutherford backscattering spectroscopy. In the experimental temperature and compositional range, no strong dependence of DFe-Mg on composition of clinopyroxene (Fe/Mg ratio between Di93-Di65) or oxygen fugacity could be detected within the resolution of the study. The lack of fO2-dependence may be related to the relatively high Al content of the crystals used in this study. Diffusion coefficients, DFe-Mg, can be described by a single Arrhenius relation with (Formula presented). DFe-Mg in clinopyroxene appears to be faster than diffusion involving Ca-species (e.g., DCa-Mg) while it is slower than DFe-Mg in other common mafic minerals (spinel, olivine, garnet, and orthopyroxene). As a consequence, diffusion in clinopyroxene may be the rate-limiting process for the freezing of many geothermometers, and compositional zoning in clinopyroxene may preserve records of a higher (compared to that preserved in other coexisting mafic minerals) temperature segment of the thermal history of a rock. In the absence of pervasive recrystallization, clinopyroxene grains will retain compositions from peak temperatures at their cores in most geological and planetary settings where peak temperatures did not exceed ~1,100 °C (e.g., resetting may be expected in slowly cooled mantle rocks, many plutonic mafic rocks, or ultra-high temperature metamorphic rocks)

    QualitÀtsentwicklung im Umfeld einer zahnÀrztlichen Praxis

    No full text

    Model calibration on cement experiments at realistic CO2 storage conditions

    No full text
    Large scale implementation of CO2 storage can significantly reduce emission of greenhouse gasses into the atmosphere. However, safe and long-term containment of CO2 in storage reservoirs must be ensured. Wellbores in the subsurface present possible leakage pathways for CO2 to the surface and hence wellbore cement reactivity is of major concern. Previous experimental studies of cement reactivity often use high brine to cement ratios which may lead to overestimations of the rate of cement alteration. We aim to study cement reactivity under more realistic CO2 storage conditions. Limited brine is used to represent a wellbore environment with brine mainly present in pore space. The experimental results show a cease or significant reduction of reaction progression after 7 days due to saturation of the fluid. This inhibits further cement dissolution and re-dissolution of secondary calcite. The observed reaction zones are matched by geochemical modeling, showing from core to rim: unreacted cement (zone A), portlandite dissolution and increased porosity (zone B), major calcite and reduced porosity plus minor ferrihydrite precipitation (zone Ci) and minor calcite precipitation (zone Cii). The calibration of the geochemical model aids the development of an accurate reactive transport model for long-term cement alteration and integrity prediction

    The clinical relevance of early identification and treatment of sleep disorders in mental health care: protocol of a randomized control trial

    Get PDF
    BACKGROUND: Sleep disorders are a risk factor for developing a variety of mental disorders, have a negative impact on their remission rates and increase the risk of relapse. Early identification and treatment of sleep disorders is therefore of paramount importance. Unfortunately, in mental health care sleep disorders are often poorly recognized and specific treatment frequently occurs late or not at all. This protocol-paper presents a randomized controlled trial investigating the clinical relevance of early detection and treatment of sleep disorders in mental health care. The two aims of this project are 1) to determine the prevalence of sleep disorders in different mental disorders, and 2) to investigate the contribution of early identification and adequate treatment of sleep disorders in individuals with mental disorders to their sleep, mental disorder symptoms, general functioning, and quality of life. METHODS: Patients newly referred to a Dutch mental health institute for psychiatric treatment will be screened for sleep disorders with the self-assessment Holland Sleep Disorders Questionnaire (HSDQ). Patients scoring above the cut-off criteria will be invited for additional diagnostic evaluation and, treatment of the respective sleep disorder. Participants will be randomly assigned to two groups: Immediate sleep diagnostics and intervention (TAU+SI-T0), or delayed start of sleep intervention (TAU+SI-T1; 6 months after inclusion). The effect of sleep treatment as add-on to treatment as usual (TAU) will be tested with regard to sleep disorder symptoms, general functioning, and quality of life (in collaboration with a psychiatric sleep centre). DISCUSSION: This trial will examine the prevalence of different sleep disorders in a broad range of mental disorders, providing information on the co-occurrence of specific sleep and mental disorders. Further, this study is the first to investigate the impact of early treatment of sleep disorders on the outcome of many mental disorders. Moreover, standard sleep interventions will be tailored to specific mental disorders, to increase their efficacy. The results of this trial may contribute considerably to the improvement of mental health care. TRIAL REGISTRATION: This clinical trial has been retrospectively registered in the Netherlands Trial Register (NL8389; https://www.trialregister.nl/trial/8389) on February 2th, 2020

    Review of induced seismicity in geothermal systems worldwide and implications for geothermal systems in the Netherlands

    Get PDF
    Geothermal energy is a viable alternative to gas for the heating of buildings, industrial areas and greenhouses, and can thus play an important role in making the transition to sustainable energy in the Netherlands. Heat is currently produced from the Dutch subsurface through circulation of water between two wells in deep (1.5–3 km) geothermal formations with temperature of up to ∌100 °C. As the number of these so-called doublets is expected to increase significantly over the next decades, and targeted depths and temperatures increase, it is important to assess potential show-stoppers related to geothermal operations. One of these potential hazards is the possibility of the occurrence of felt seismic events, which could potentially damage infrastructure and housing, and affect public support. Such events have been observed in several geothermal systems in other countries. Here we review the occurrence (or the lack) of felt seismic events in geothermal systems worldwide and identify key factors influencing the occurrence and magnitude of these events. Based on this review, we project the findings for seismicity in geothermal systems to typical geothermal formations and future geothermal developments in the Netherlands. The case study review shows that doublets that circulate fluids through relatively shallow, porous, sedimentary aquifers far from the crystalline basement are unlikely to generate felt seismic events. On the other hand, stimulations or circulations in or near competent, fractured, basement rocks and production and reinjection operations in high-temperature geothermal fields are more prone to induce felt events, occasionally with magnitudes of M > 5.0. Many of these operations are situated in tectonically active areas, and stress and temperature changes may be large. The presence of large, optimally oriented and critically stressed faults increases the potential for induced seismicity. The insights from the case study review suggest that the potential for the occurrence of M > 2.0 seismicity for geothermal operations in several of the sandstone target formations in the Netherlands is low, especially if faults can be avoided. The potential for induced seismicity may be moderate for operations in faulted carbonate rocks. Induced seismicity always remains a complex and site-specific process with large unknowns, and can never be excluded entirely. However, assessing the potential for inducing felt seismic events can be improved by considering the relevant (site-specific) geological and operational key factors discussed in this article

    Review of induced seismicity in geothermal systems worldwide and implications for geothermal systems in the Netherlands

    No full text
    Geothermal energy is a viable alternative to gas for the heating of buildings, industrial areas and greenhouses, and can thus play an important role in making the transition to sustainable energy in the Netherlands. Heat is currently produced from the Dutch subsurface through circulation of water between two wells in deep (1.5–3 km) geothermal formations with temperature of up to ∌100 °C. As the number of these so-called doublets is expected to increase significantly over the next decades, and targeted depths and temperatures increase, it is important to assess potential show-stoppers related to geothermal operations. One of these potential hazards is the possibility of the occurrence of felt seismic events, which could potentially damage infrastructure and housing, and affect public support. Such events have been observed in several geothermal systems in other countries. Here we review the occurrence (or the lack) of felt seismic events in geothermal systems worldwide and identify key factors influencing the occurrence and magnitude of these events. Based on this review, we project the findings for seismicity in geothermal systems to typical geothermal formations and future geothermal developments in the Netherlands. The case study review shows that doublets that circulate fluids through relatively shallow, porous, sedimentary aquifers far from the crystalline basement are unlikely to generate felt seismic events. On the other hand, stimulations or circulations in or near competent, fractured, basement rocks and production and reinjection operations in high-temperature geothermal fields are more prone to induce felt events, occasionally with magnitudes of M > 5.0. Many of these operations are situated in tectonically active areas, and stress and temperature changes may be large. The presence of large, optimally oriented and critically stressed faults increases the potential for induced seismicity. The insights from the case study review suggest that the potential for the occurrence of M > 2.0 seismicity for geothermal operations in several of the sandstone target formations in the Netherlands is low, especially if faults can be avoided. The potential for induced seismicity may be moderate for operations in faulted carbonate rocks. Induced seismicity always remains a complex and site-specific process with large unknowns, and can never be excluded entirely. However, assessing the potential for inducing felt seismic events can be improved by considering the relevant (site-specific) geological and operational key factors discussed in this article
    corecore