409 research outputs found

    The Specificity of Peptides Bound to Human Histocompatibility Leukocyte Antigen (HLA)-B27 Influences the Prevalence of Arthritis in HLA-B27 Transgenic Rats

    Get PDF
    Human histocompatibility leukocyte antigen B27 is highly associated with the rheumatic diseases termed spondyloarthropathies, but the mechanism is not known. B27 transgenic rats develop a spontaneous disease resembling the human spondyloarthropathies that includes arthritis and colitis. To investigate whether this disease requires the binding of specific peptides to B27, we made a minigene construct in which a peptide from influenza nucleoprotein, NP383-391 (SRYWAIRTR), which binds B27 with high affinity, is targeted directly to the ER by the signal peptide of the adenovirus E3/gp19 protein. Rats transgenic for this minigene, NP1, were made and bred with B27 rats. The production of the NP383-391 peptide in B27+NP1+ rats was confirmed immunologically and by mass spectrometry. The NP1 product displaced ∼90% of the 3H-Arg-labeled endogenous peptide fraction in B27+NP1+ spleen cells. Male B27+NP1+ rats had a significantly reduced prevalence of arthritis, compared with B27+NP− males or B27+ males with a control construct, NP2, whereas colitis was not significantly affected by the NP1 transgene. These findings support the hypothesis that B27-related arthritis requires binding of a specific peptide or set of peptides to B27, and they demonstrate a method for efficient transgenic targeting of peptides to the ER

    Thyroid peroxidase forms thionamide-sensitive homodimers: relevance for immunomodulation of thyroid autoimmunity

    Get PDF
    Thyroid peroxidase (TPO) is the key enzyme in thyroid hormone production and a universal autoantigen in Graves’ and other autoimmune thyroid diseases. We wished to explore the expression of TPO and whether it was affected by thionamide antithyroid drugs. We studied recombinant TPO, stably expressed by a Chinese hamster ovary cell line (CHO-TPO) and transiently expressed TPO-enhanced green fluorescent protein (eGFP) and -FLAG fusion proteins. Immunoblotting of CHO-TPO cell extracts showed high-molecular weight (HMW) TPO isoforms that were resistant to reduction, as well as 110 kDa monomeric TPO. Co-immunoprecipitation and enzyme-linked-immunosorbent assay (ELISA) binding studies of FLAG- and eGFP-tagged TPO demonstrated TPO dimerisation. CHO-TPO cells cultured in methimazole (MMI) for 10 days showed a significant reduction in HMW-TPO isoforms at MMI concentrations of 1 µM and above (p < 0.01), whereas monomeric TPO expression was unchanged. We observed a similar reduction in HMW-TPO in CHO-TPO cells cultured in propylthiouracil (10 µM and above). Binding of Graves’ disease patient sera and TPO-Fabs to enzymatically active TPO that was captured onto solid phase was not abrogated by MMI. The cellular localisation of TPO in CHO-TPO cells was unchanged by MMI treatment. Our demonstration of homodimeric TPO and the reduction in HMW-TPO isoforms during thionamide treatment of CHO-TPO cells shows, for the first time, an effect of thionamides on TPO structure. This suggests a structural correlate to the effect of thionamides on TPO enzymatic activity and opens up a novel potential mechanism for thionamide immunomodulation of autoimmune thyroid disease

    The utility of pathway selective estrogen receptor ligands that inhibit nuclear factor-κB transcriptional activity in models of rheumatoid arthritis

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease that produces synovial proliferation and joint erosions. The pathologic lesions of RA are driven through the production of inflammatory mediators in the synovium mediated, in part, by the transcription factor NF-κB. We have identified a non-steroidal estrogen receptor ligand, WAY-169916, that selectively inhibits NF-κB transcriptional activity but is devoid of conventional estrogenic activity. The activity of WAY-169916 was monitored in two models of arthritis, the HLA-B27 transgenic rat and the Lewis rat adjuvant-induced model, after daily oral administration. In both models, a near complete reversal in hindpaw scores was observed as well as marked improvements in the histological scores. In the Lewis rat adjuvant model, WAY-169916 markedly suppresses the adjuvant induction of three serum acute phase proteins: haptoglobin, α1-acid glycoprotein (α1-AGP), and C-reactive protein (CRP). Gene expression experiments also demonstrate a global suppression of adjuvant-induced gene expression in the spleen, liver, and popliteal lymph nodes. Finally, WAY-169916 was effective in suppressing tumor necrosis factor-α-mediated inflammatory gene expression in fibroblast-like synoviocytes isolated from patients with RA. Together, these data suggest the utility of WAY-169916, and other compounds in its class, in treating RA through global suppression of inflammation via selective blockade of NF-κB transcriptional activity

    Expression of pendrin in benign and malignant human thyroid tissues

    Get PDF
    The Pendred syndrome gene (PDS) encodes a transmembrane protein, pendrin, which is expressed in follicular thyroid cells and participates in the apical iodide transport. Pendrin expression has been studied in various thyroid neoplasms by means of immunohistochemistry (IHC), Western blot and RT–quantitative real-time PCR. The expression was related to the functional activity of the thyroid tissue. Follicular cells of normal, nodular goitre and Graves' disease tissues express pendrin at the apical pole of the thyrocytes. In follicular adenomas, pendrin was detected in cell membranes and cytoplasm simultaneously in 10 out of 15 cases. Pendrin protein was detected in 73.3 and 76.7% of the follicular (FTC) and papillary (PTC) thyroid carcinomas, respectively, where pendrin was solely localised inside the cytoplasm. An extensive intracellular immunostaining of pendrin was observed in six out of 11 (54.5%) of positive FTCs and 19 out of 23 (82%) of PTCs. Focal reactivity was detected in one follicular- and three papillary carcinomas, whereas pendrin protein was absent in three of 15 FTC and four of 30 PTC; mRNA of pendrin was detected in 92.4% of thyroid tumours. The relative mRNA expression of pendrin was lower in cancers than in normal thyroid tissues (P<0.001). The pendrin protein level was found to parallel its mRNA expression, which was not, however, related to the tumour size and tumour stage. In conclusion, pendrin is expressed in the majority of differentiated thyroid tumours with high individual variability but its targeting to the apical cell membrane is affected

    Intestinal, extra-intestinal and systemic sequelae of Toxoplasma gondii induced acute ileitis in mice harboring a human gut microbiota

    Get PDF
    Background Within seven days following peroral high dose infection with Toxoplasma gondii susceptible conventionally colonized mice develop acute ileitis due to an underlying T helper cell (Th) -1 type immunopathology. We here addressed whether mice harboring a human intestinal microbiota developed intestinal, extra-intestinal and systemic sequelae upon ileitis induction. Methodology/Principal findings Secondary abiotic mice were generated by broad- spectrum antibiotic treatment and associated with a complex human intestinal microbiota following peroral fecal microbiota transplantation. Within three weeks the human microbiota had stably established in the murine intestinal tract as assessed by quantitative cultural and culture-independent (i.e. molecular 16S rRNA based) methods. At day 7 post infection (p.i.) with 50 cysts of T. gondii strain ME49 by gavage human microbiota associated (hma) mice displayed severe clinical, macroscopic and microscopic sequelae indicating acute ileitis. In diseased hma mice increased numbers of innate and adaptive immune cells within the ileal mucosa and lamina propria and elevated intestinal secretion of pro-inflammatory mediators including IFN-γ, IL-12 and nitric oxide could be observed at day 7 p.i. Ileitis development was accompanied by substantial shifts in intestinal microbiota composition of hma mice characterized by elevated total bacterial loads and increased numbers of intestinal Gram-negative commensals such as enterobacteria and Bacteroides / Prevotella species overgrowing the small and large intestinal lumen. Furthermore, viable bacteria translocated from the inflamed ileum to extra- intestinal including systemic compartments. Notably, pro-inflammatory immune responses were not restricted to the intestinal tract as indicated by increased pro-inflammatory cytokine secretion in extra-intestinal (i.e. liver and kidney) and systemic compartments including spleen and serum. Conclusion/Significance With respect to the intestinal microbiota composition “humanized” mice display acute ileitis following peroral high dose T. gondii infection. Thus, hma mice constitute a suitable model to further dissect the interactions between pathogens, human microbiota and vertebrate host immunity during acute intestinal inflammation

    Host Genetics and Environmental Factors Regulate Ecological Succession of the Mouse Colon Tissue-Associated Microbiota

    Get PDF
    Background: The integration of host genetics, environmental triggers and the microbiota is a recognised factor in the pathogenesis of barrier function diseases such as IBD. In order to determine how these factors interact to regulate the host immune response and ecological succession of the colon tissue-associated microbiota, we investigated the temporal interaction between the microbiota and the host following disruption of the colonic epithelial barrier. Methodology/Principal Findings: Oral administration of DSS was applied as a mechanistic model of environmental damage of the colon and the resulting inflammation characterized for various parameters over time in WT and Nod2 KO mice. Results: In WT mice, DSS damage exposed the host to the commensal flora and led to a migration of the tissue-associated bacteria from the epithelium to mucosal and submucosal layers correlating with changes in proinflammatory cytokine profiles and a progressive transition from acute to chronic inflammation of the colon. Tissue-associated bacteria levels peaked at day 21 post-DSS and declined thereafter, correlating with recruitment of innate immune cells and development of the adaptive immune response. Histological parameters, immune cell infiltration and cytokine biomarkers of inflammation were indistinguishable between Nod2 and WT littermates following DSS, however, Nod2 KO mice demonstrated significantly higher tissue-associated bacterial levels in the colon. DSS damage and Nod2 genotype independently regulated the community structure of the colon microbiota

    Inter-relationship of plasma markers of oxidative stress and thyroid hormones in schizophrenics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The relationship of oxidative stress to thyroid hormones has not been studied in the schizophrenics. The present study determined the status and interrelationship of plasma markers of oxidative stress, nitric oxide and thyroid hormones in thirty (17 males and 13 females) newly diagnosed patients with acute schizophrenia before initiation of chemotherapy. Twenty five (13 males and 12 females) mentally healthy individuals served as controls. Patients and controls with history of hard drugs (including alcohol and cigarette), pre-diagnosis medications (e.g. antiparkinsonian/antipsychotic drugs), chronic infections, liver disease and diabetes mellitus were excluded from the study. Plasma levels of total antioxidant potential (TAP), total plasma peroxides (TPP), nitric oxide (NO), malondialdehyde (MDA), thyroxine (T4), tri-iodothyronine (T3) and thyroid stimulating hormone (TSH) were determined in all participants using spectrophotometric and enzyme linked immunosorbent assay (ELISA) methods respectively. Oxidative stress index (OSI) was calculated as the percent ratio of total plasma peroxides and total antioxidant potential.</p> <p>Findings</p> <p>Significantly higher plasma levels of MDA (p < 0.01), TPP (p < 0.01), OSI (p < 0.01), T3 (p < 0.01) and T4 (p < 0.05) were observed in schizophrenics when compared with the controls. The mean levels of TAP, NO and TSH were significantly lower in schizophrenics (p < 0.01) when compared with the controls. The result shows that T3 values correlate significantly with MDA (p < 0.05) and TPP (p < 0.01) in schizophrenics.</p> <p>Conclusions</p> <p>Higher level of TPP may enhance thyroid hormogenesis in schizophrenics. Adjuvant antioxidant therapy may be a novel approach in the treatment of schizophrenic patients.</p
    corecore