517 research outputs found
WorldPop, open data for spatial demography
High resolution, contemporary data on human population distributions, their characteristics and changes over time are a prerequisite for the accurate measurement of the impacts of population growth, for monitoring changes and for planning interventions. WorldPop aims to meet these needs through the provision of detailed and open access spatial demographic datasets built using transparent approaches. The Scientific Data WorldPop collection brings together descriptor papers on these datasets and is introduced her
Large-scale spatial population databases in infectious disease research
Modelling studies on the spatial distribution and spread of infectious diseases are becoming increasingly detailed and sophisticated, with global risk mapping and epidemic modelling studies now popular. Yet, in deriving populations at risk of disease estimates, these spatial models must rely on existing global and regional datasets on population distribution, which are often based on outdated and coarse resolution data. Moreover, a variety of different methods have been used to model population distribution at large spatial scales. In this review we describe the main global gridded population datasets that are freely available for health researchers and compare their construction methods, and highlight the uncertainties inherent in these population datasets. We review their application in past studies on disease risk and dynamics, and discuss how the choice of dataset can affect results. Moreover, we highlight how the lack of contemporary, detailed and reliable data on human population distribution in low income countries is proving a barrier to obtaining accurate large-scale estimates of population at risk and constructing reliable models of disease spread, and suggest research directions required to further reduce these barriers
Mapping road network communities for guiding disease surveillance and control strategies
Human mobility is increasing in its volume, speed and reach, leading to the
movement and introduction of pathogens through infected travelers. An
understanding of how areas are connected, the strength of these connections and
how this translates into disease spread is valuable for planning surveillance
and designing control and elimination strategies. While analyses have been
undertaken to identify and map connectivity in global air, shipping and
migration networks, such analyses have yet to be undertaken on the road
networks that carry the vast majority of travellers in low and middle income
settings. Here we present methods for identifying road connectivity
communities, as well as mapping bridge areas between communities and key
linkage routes. We apply these to Africa, and show how many highly-connected
communities straddle national borders and when integrating malaria prevalence
and population data as an example, the communities change, highlighting regions
most strongly connected to areas of high burden. The approaches and results
presented provide a flexible tool for supporting the design of disease
surveillance and control strategies through mapping areas of high connectivity
that form coherent units of intervention and key link routes between
communities for targeting surveillance.Comment: 11 pages, 5 figures, research pape
Multi-scale gridded urban morphometrics for settlement classification and population mapping
Urban areas are expanding rapidly around the world, and much of this growth is expected in low- and middle-income countries. Policy makers, researchers, and those implementing development projects need up-to-date and consistent information on cities in order to plan and track progress towards Sustainable Development Goals. Yet in many places experiencing rapid growth, information on urban areas and their population is lacking, outdated or incomplete. In recent years, increasing availability of very high spatial resolution imagery (<1 m resolution) and computing power is enabling sets of building footprint polygons to be automatically extracted from the imagery and mapped for whole countries. These building footprint datasets provide a unique resource to study urban morphometrics in places which may lack other local data. This paper demonstrates the use of a spatial grid to classify urban fabric into settlement types. This unit of analysis is in contrast to plots or parcels which are more commonly used in urban morphology studies, and a case study in Southampton, UK is used to explore the sensitivity of the results to varying the parameters used to define the size of the grid. These initial results suggest that multiple scales of observation windows can be combined to identify key patterns across space and that multiple grid resolutions can give relatively consistent classification results. Future work is needed to explore the use of grids to study urban form in other settings
Measuring populations to improve vaccination coverage
In low-income settings, vaccination campaigns supplement routine immunization but often fail to achieve coverage goals due to uncertainty about target population size and distribution. Accurate, updated estimates of target populations are rare but critical; short-term fluctuations can greatly impact population size and susceptibility. We use satellite imagery to quantify population fluctuations and the coverage achieved by a measles outbreak response vaccination campaign in urban Niger and compare campaign estimates to measurements from a post-campaign survey. Vaccine coverage was overestimated because the campaign underestimated resident numbers and seasonal migration further increased the target population. We combine satellite-derived measurements of fluctuations in population distribution with high-resolution measles case reports to develop a dynamic model that illustrates the potential improvement in vaccination campaign coverage if planners account for predictable population fluctuations. Satellite imagery can improve retrospective estimates of vaccination campaign impact and future campaign planning by synchronizing interventions with predictable population fluxes
A geostatistical analysis of the association between armed conflicts and P. falciparum malaria in Africa 1997-2010
Background The absence of conflict in a country has been cited as a crucial factor affecting the operational feasibility of achieving malaria control and elimination, yet mixed evidence exists on the influence that conflicts have had on malaria transmission. Over the past two decades, Africa has seen substantial numbers of armed conflicts of varying length and scale, creating conditions that can disrupt control efforts and impact malaria transmission. However, very few studies have quantitatively assessed the associations between conflicts and malaria transmission, particularly in a consistent way across multiple countries. Methods In this analysis an explicit geostatistical, autoregressive, mixed model is employed to quantitatively assess the association between conflicts and variations in Plasmodium falciparum parasite prevalence across a 13-year period in sub-Saharan Africa. Results Analyses of geolocated, malaria prevalence survey variations against armed conflict data in general showed a wide, but short-lived impact of conflict events geographically. The number of countries with decreased P. falciparum parasite prevalence (17) is larger than the number of countries with increased transmission (12), and notably, some of the countries with the highest transmission pre-conflict were still found with lower transmission post-conflict. For four countries, there were no significant changes in parasite prevalence. Finally, distance from conflicts, duration of conflicts, violence of conflict, and number of conflicts were significant components in the model explaining the changes in P. falciparum parasite rate. Conclusions The results suggest that the maintenance of intervention coverage and provision of healthcare in conflict situations to protect vulnerable populations can maintain gains in even the most difficult of circumstances, and that conflict does not represent a substantial barrier to elimination goals
A high resolution spatial population database of Somalia for disease risk mapping
The article investigates the possibility of creating a data collection system in an unstable environment like Somalia to estimate the incidence of infectious diseases in order to improve the reconstruction of the health sector.Maqaalku wuxuu baarayaa sidii lagu samayn lahaa nidaam lagu ururiyo daatooyinka meel aan xasillooneen sida Soomaaliya, si loo qiyaaso saamaynta cudurrada laysu gudbiyo, loona hagaajiyo qaybta caafimaadka.L'articolo indaga sulla possibilità di creare un sistema di raccolta dati in un contesto instabile come quello somalo per stimare l'incidenza di malattie infettive al fine di una migliore ricostruzione del settore sanitario
Mapping for Maternal and Newborn Health: The Distributions of Women of Childbearing Age, Pregnancies and Births.
The health and survival of women and their new-born babies in low income countries has been a key priority in public health since the 1990s. However, basic planning data, such as numbers of pregnancies and births, remain difficult to obtain and information is also lacking on geographic access to key services, such as facilities with skilled health workers. For maternal and newborn health and survival, planning for safer births and healthier newborns could be improved by more accurate estimations of the distributions of women of childbearing age. Moreover, subnational estimates of projected future numbers of pregnancies are needed for more effective strategies on human resources and infrastructure, while there is a need to link information on pregnancies to better information on health facilities in districts and regions so that coverage of services can be assessed. This paper outlines demographic mapping methods based on freely available data for the production of high resolution datasets depicting estimates of numbers of people, women of childbearing age, live births and pregnancies, and distribution of comprehensive EmONC facilities in four large high burden countries: Afghanistan, Bangladesh, Ethiopia and Tanzania. Satellite derived maps of settlements and land cover were constructed and used to redistribute areal census counts to produce detailed maps of the distributions of women of childbearing age. Household survey data, UN statistics and other sources on growth rates, age specific fertility rates, live births, stillbirths and abortions were then integrated to convert the population distribution datasets to gridded estimates of births and pregnancies.These estimates, which can be produced for current, past or future years based on standard demographic projections, can provide the basis for strategic intelligence, planning services, and provide denominators for subnational indicators to track progress. The datasets produced are part of national midwifery workforce assessments conducted in collaboration with the respective Ministries of Health and the United Nations Population Fund (UNFPA) to identify disparities between population needs, health infrastructure and workforce supply. The datasets are available to the respective Ministries as part of the UNFPA programme to inform midwifery workforce planning and also publicly available through the WorldPop population mapping project
High Resolution Population Maps for Low Income Nations: Combining Land Cover and Census in East Africa
BACKGROUND: Between 2005 and 2050, the human population is forecast to grow by 2.7 billion, with the vast majority of this growth occurring in low income countries. This growth is likely to have significant social, economic and environmental impacts, and make the achievement of international development goals more difficult. The measurement, monitoring and potential mitigation of these impacts require high resolution, contemporary data on human population distributions. In low income countries, however, where the changes will be concentrated, the least information on the distribution of population exists. In this paper we investigate whether satellite imagery in combination with land cover information and census data can be used to create inexpensive, high resolution and easily-updatable settlement and population distribution maps over large areas. METHODOLOGY/PRINCIPAL FINDINGS: We examine various approaches for the production of maps of the East African region (Kenya, Uganda, Burundi, Rwanda and Tanzania) and where fine resolution census data exists, test the accuracies of map production approaches and existing population distribution products. The results show that combining high resolution census, settlement and land cover information is important in producing accurate population distribution maps. CONCLUSIONS: We find that this semi-automated population distribution mapping at unprecedented spatial resolution produces more accurate results than existing products and can be undertaken for as little as $0.01 per km(2). The resulting population maps are a product of the Malaria Atlas Project (MAP: http://www.map.ox.ac.uk) and are freely available
- …