14,613 research outputs found

    Gas stripping in galaxy groups - the case of the starburst spiral NGC 2276

    Get PDF
    Ram pressure stripping of galactic gas is generally assumed to be inefficient in galaxy groups due to the relatively low density of the intragroup medium and the small velocity dispersions of groups. To test this assumption, we obtained Chandra X-ray data of the starbursting spiral NGC 2276 in the NGC 2300 group of galaxies, a candidate for a strong galaxy interaction with hot intragroup gas. The data reveal a shock-like feature along the western edge of the galaxy and a low-surface-brightness tail extending to the east, similar to the morphology seen in other wavebands. Spatially resolved spectroscopy shows that the data are consistent with intragroup gas being pressurized at the leading western edge of NGC 2276 due to the galaxy moving supersonically through the intragroup medium at a velocity ~850 km/s. Detailed modelling of the gravitational potential of NGC 2276 shows that the resulting ram-pressure could significantly affect the morphology of the outer gas disc but is probably insufficient to strip large amounts of cold gas from the disc. We estimate the mass loss rates due to turbulent viscous stripping and starburst outflows being swept back by ram pressure, showing that both mechanisms could plausibly explain the presence of the X-ray tail. Comparison to existing HI measurements shows that most of the gas escaping the galaxy is in a hot phase. With a total mass loss rate of roughly 5 M_Sun/yr, the galaxy could be losing its entire present HI supply within a Gyr. This demonstrates that the removal of galactic gas through interactions with a hot intragroup medium can occur rapidly enough to transform the morphology of galaxies in groups. Implications of this for galaxy evolution in groups and clusters are briefly discussed.Comment: 16 pages, 8 figures, accepted for publication in MNRA

    3D simulations of self-propelled, reconstructed jellyfish using vortex methods

    Full text link
    We present simulations of the vortex dynamics associated with the self-propelled motion of jellyfish. The geometry is obtained from image segmentation of video recordings from live jellyfish. The numerical simulations are performed using three-dimensional viscous, vortex particle methods with Brinkman penalization to impose the kinematics of the jellyfish motion. We study two types of strokes recorded in the experiment1. The first type (stroke A) produces two vortex rings during the stroke: one outside the bell during the power stroke and one inside the bell during the recovery stroke. The second type (stroke B) produces three vortex rings: one ring during the power stroke and two vortex rings during the recovery stroke. Both strokes propel the jellyfish, with stroke B producing the highest velocity. The speed of the jellyfish scales with the square root of the Reynolds number. The simulations are visualized in a fluid dynamics video.Comment: 1 page, 1 figur

    Coupling of shells in a carbon nanotube quantum dot

    Full text link
    We systematically study the coupling of longitudinal modes (shells) in a carbon nanotube quantum dot. Inelastic cotunneling spectroscopy is used to probe the excitation spectrum in parallel, perpendicular and rotating magnetic fields. The data is compared to a theoretical model including coupling between shells, induced by atomically sharp disorder in the nanotube. The calculated excitation spectra show good correspondence with experimental data.Comment: 8 pages, 4 figure

    Meteorological application of Apollo photography Final report

    Get PDF
    Development of meteorological information and parameters based on cloud photographs taken during Apollo 9 fligh

    A note on Kerr/CFT and free fields

    Full text link
    The near-horizon geometry of the extremal four-dimensional Kerr black hole and certain generalizations thereof has an SL(2,R) x U(1) isometry group. Excitations around this geometry can be controlled by imposing appropriate boundary conditions. For certain boundary conditions, the U(1) isometry is enhanced to a Virasoro algebra. Here, we propose a free-field construction of this Virasoro algebra.Comment: 10 pages, v2: comments and references adde
    corecore