7,697 research outputs found
Improving regulatory standards for clearing facilities
Clearinghouses (Banking) ; Payment systems
Measurement of the energy dependence of phase relaxation by single electron tunneling
Single electron tunneling through a single impurity level is used to probe
the fluctuations of the local density of states in the emitter. The energy
dependence of quasi-particle relaxation in the emitter can be extracted from
the damping of the fluctuations of the local density of states (LDOS). At
larger magnetic fields Zeeman splitting is observed.Comment: 2 pages, 4 figures; 25th International Conference on the Physics of
Semiconductors, Osaka, Japan, September 17-22, 200
Electron release of rare gas atom clusters under an intense laser pulse
Calculating the energy absorption of atomic clusters as a function of the
laser pulse length we find a maximum for a critical . We show that
can be linked to an optimal cluster radius . The existence of this
radius can be attributed to the enhanced ionization mechanism originally
discovered for diatomic molecules. Our findings indicate that enhanced
ionization should be operative for a wide class of rare gas clusters. From a
simple Coulomb explosion ansatz, we derive an analytical expression relating
the maximum energy release to a suitably scaled expansion time which can be
expressed with the pulse length .Comment: 4 pages, 5 figure
Tunable graphene system with two decoupled monolayers
The use of two truly two-dimensional gapless semiconductors, monolayer and bilayer graphene, as current-carrying components in field-effect transistors (FET) gives access to new types of nanoelectronic devices. Here, we report on the development of graphene-based FETs containing two decoupled graphene monolayers manufactured from a single one folded during the exfoliation process. The transport characteristics of these newly-developed devices differ markedly from those manufactured from a single-crystal bilayer. By analyzing Shubnikov-de Haas oscillations, we demonstrate the possibility to independently control the carrier densities in both layers using top and bottom gates, despite there being only a nanometer scale separation between them
A discrete time-dependent method for metastable atoms in intense fields
The full-dimensional time-dependent Schrodinger equation for the electronic
dynamics of single-electron systems in intense external fields is solved
directly using a discrete method.
Our approach combines the finite-difference and Lagrange mesh methods. The
method is applied to calculate the quasienergies and ionization probabilities
of atomic and molecular systems in intense static and dynamic electric fields.
The gauge invariance and accuracy of the method is established. Applications to
multiphoton ionization of positronium and hydrogen atoms and molecules are
presented. At very high intensity above saturation threshold, we extend the
method using a scaling technique to estimate the quasienergies of metastable
states of the hydrogen molecular ion. The results are in good agreement with
recent experiments.Comment: 10 pages, 9 figure, 4 table
Gate-tunable bandgap in bilayer graphene
The tight-binding model of bilayer graphene is used to find the gap between
the conduction and valence bands, as a function of both the gate voltage and as
the doping by donors or acceptors. The total Hartree energy is minimized and
the equation for the gap is obtained. This equation for the ratio of the gap to
the chemical potential is determined only by the screening constant. Thus the
gap is strictly proportional to the gate voltage or the carrier concentration
in the absence of donors or acceptors. In the opposite case, where the donors
or acceptors are present, the gap demonstrates the asymmetrical behavior on the
electron and hole sides of the gate bias. A comparison with experimental data
obtained by Kuzmenko et al demonstrates the good agreement.Comment: 6 pages, 5 figure
In search of ‘lost’ knowledge and outsourced expertise in flood risk management
This paper examines the parallel discourses of ‘lost’ local flood expertise and the growing use of commercial consultancies to outsource aspects of flood risk work. We critically examine the various claims and counter-claims about lost, local and external expertise in flood management, focusing on the aftermath of the 2007 floods in East Yorkshire, England. Drawing on interviews with consultants, drainage engineers and others, we caution against claims that privilege ‘local’ floods knowledge as ‘good’ and expert knowledge as somehow suspect. This paper urges carefulness in interpreting claims about local knowledge, arguing that it is important always to think instead of hybrid knowledge formations. We conclude by arguing that experiments in the co-production of flood risk knowledge need to be seen as part of a spectrum of ways for producing shared knowledge
A glimpse into the differential topology and geometry of optimal transport
This note exposes the differential topology and geometry underlying some of
the basic phenomena of optimal transportation. It surveys basic questions
concerning Monge maps and Kantorovich measures: existence and regularity of the
former, uniqueness of the latter, and estimates for the dimension of its
support, as well as the associated linear programming duality. It shows the
answers to these questions concern the differential geometry and topology of
the chosen transportation cost. It also establishes new connections --- some
heuristic and others rigorous --- based on the properties of the
cross-difference of this cost, and its Taylor expansion at the diagonal.Comment: 27 page
Symmetry of boundary conditions of the Dirac equation for electrons in carbon nanotubes.
We consider the effective mass model of spinless electrons in single wall carbon nanotubes that is equivalent to the Dirac equation for massless fermions. Within this framework we derive all possible energy independent hard wall boundary conditions that are applicable to metallic tubes. The boundary conditions are classified in terms of their symmetry properties and we demonstrate that the use of different boundary conditions will result in varying degrees of valley degeneracy breaking of the single particle energy spectrum
- …