338 research outputs found

    Vascular uptake of rehydration fluids in hypohydrated men at rest and exercise

    Get PDF
    The purpose of this study was to formulate and to evaluate rehydration drinks, which would restore total body water and plasma volume (PV), for astronauts to consume before and during extravehicular activity, a few hours before reentry, and immediately after landing. In the first experiment (rest, sitting), five healthy men (23-41 yr), previously dehydrated for 24 hr., drank six (1a, 2, 4, 5, 6, 7) fluid formulations (one each at weekly intervals) and then sat for 70 min. Pre-test PV were measured with Evans blue dye and changes in PV were calculated with the hematocrit-hemoglobin transformation equation. This rest experiment simulated hypohydrated astronauts preparing for reentry. The second experiment (exercise, supine) followed the same protocol except four healthy men (30-46 yr) worked for 70 min. in the supine position on a cycle ergometer at a mean load of 71+/-1 percent of their peak aerobic work capacity. This exercise experiment simulated conditions for astronauts with reduced total body water engaging in extravehicular activity

    Effect of Neutrino Heating on Primordial Nucleosynthesis

    Full text link
    We have modified the standard code for primordial nucleosynthesis to include the effect of the slight heating of neutrinos by e±e^\pm annihilations. There is a small, systematic change in the 4^4He yield, ΔY+1.5×104\Delta Y \simeq +1.5\times 10^{-4}, which is insensitive to the value of the baryon-to-photon ratio η\eta for 10^{-10}\la \eta \la 10^{-9}. We also find that the baryon-to-photon ratio decreases by about 0.5\% less than the canonical factor of 4/11 because some of the entropy in e±e^\pm pairs is transferred to neutrinos. These results are in accord with recent analytical estimates.Comment: 14 pages/4 Figs (upon request

    Effect of Finite Mass on Primordial Nucleosynthesis

    Full text link
    We have calculated the small effect of finite nucleon mass on the weak-interaction rates that interconvert protons and neutrons in the early Universe. We have modified the standard code for primordial nucleosynthesis to include these corrections and find a small, systematic increase in the 4He yield, δY/Y(0.470.50)\delta Y / Y \simeq (0.47 - 0.50)% , depending slightly on the baryon-to-photon ratio. The fractional changes in the abundances of the other light elements are a few percent or less for interesting values of the baryon-to-photon ratio.Comment: 15 pages, 8 figures, uses psfig.st

    Origin and evolution of the light nuclides

    Get PDF
    After a short historical (and highly subjective) introduction to the field, I discuss our current understanding of the origin and evolution of the light nuclides D, He-3, He-4, Li-6, Li-7, Be-9, B-10 and B-11. Despite considerable observational and theoretical progress, important uncertainties still persist for each and every one of those nuclides. The present-day abundance of D in the local interstellar medium is currently uncertain, making it difficult to infer the recent chemical evolution of the solar neighborhood. To account for the observed quasi-constancy of He-3 abundance from the Big Bang to our days, the stellar production of that nuclide must be negligible; however, the scarce observations of its abundance in planetary nebulae seem to contradict this idea. The observed Be and B evolution as primaries suggests that the source composition of cosmic rays has remained quasi-constant since the early days of the Galaxy, a suggestion with far reaching implications for the origin of cosmic rays; however, the main idea proposed to account for that constancy, namely that superbubbles are at the source of cosmic rays, encounters some serious difficulties. The best explanation for the mismatch between primordial Li and the observed "Spite-plateau" in halo stars appears to be depletion of Li in stellar envelopes, by some yet poorly understood mechanism. But this explanation impacts on the level of the recently discovered early ``Li-6 plateau'', which (if confirmed), seriously challenges current ideas of cosmic ray nucleosynthesis.Comment: 18 pages, 9 figs. Invited Review in "Symposium on the Composition of Matter", honoring Johannes Geiss on the occasion of his 80th birthday (Grindelwald, Switzerland, Sept. 2006), to be published in Space Science Series of ISS

    The fundamental constants and their variation: observational status and theoretical motivations

    Full text link
    This article describes the various experimental bounds on the variation of the fundamental constants of nature. After a discussion on the role of fundamental constants, of their definition and link with metrology, the various constraints on the variation of the fine structure constant, the gravitational, weak and strong interactions couplings and the electron to proton mass ratio are reviewed. This review aims (1) to provide the basics of each measurement, (2) to show as clearly as possible why it constrains a given constant and (3) to point out the underlying hypotheses. Such an investigation is of importance to compare the different results, particularly in view of understanding the recent claims of the detections of a variation of the fine structure constant and of the electron to proton mass ratio in quasar absorption spectra. The theoretical models leading to the prediction of such variation are also reviewed, including Kaluza-Klein theories, string theories and other alternative theories and cosmological implications of these results are discussed. The links with the tests of general relativity are emphasized.Comment: 56 pages, l7 figures, submitted to Rev. Mod. Phy

    Third Generation Familons, B Factories, and Neutrino Cosmology

    Full text link
    We study the physics of spontaneously broken family symmetries acting on the third generation. Massless familons (or Majorons) ff associated with such broken symmetries are motivated especially by cosmological scenarios with decaying tau neutrinos. We first note that, in marked contrast with the case for the first two generations, constraints on third generation familon couplings are poor, and are, in fact, non-existent at present in the hadronic sector. We derive new bounds from B0B^0--Bˉ0\bar{B}^0 mixing, B0l+lB^0 \to l^+ l'^-, bsννˉb\to s\nu\bar{\nu}, and astrophysics. The resulting constraints on familon decay constants are still much weaker than those for the first and second generation. We then discuss the promising prospects for significant improvements from searches for τlf\tau\to l f, B(π,K)fB\to (\pi, K) f, and b(d,s)fb\to (d,s) f with the current CLEO, ARGUS, and LEP data. Finally, we note that future constraints from CLEO III and the BB factories will probe decay constants beyond 10^8 GeV, well within regions of parameter space favored by proposed scenarios in neutrino cosmology.Comment: ReVTeX, 33 pages, 6 figures, notation improved, references added, revised to conform to pubished versio

    Tidally-induced thermonuclear Supernovae

    Full text link
    We discuss the results of 3D simulations of tidal disruptions of white dwarfs by moderate-mass black holes as they may exist in the cores of globular clusters or dwarf galaxies. Our simulations follow self-consistently the hydrodynamic and nuclear evolution from the initial parabolic orbit over the disruption to the build-up of an accretion disk around the black hole. For strong enough encounters (pericentre distances smaller than about 1/3 of the tidal radius) the tidal compression is reversed by a shock and finally results in a thermonuclear explosion. These explosions are not restricted to progenitor masses close to the Chandrasekhar limit, we find exploding examples throughout the whole white dwarf mass range. There is, however, a restriction on the masses of the involved black holes: black holes more massive than 2×1052\times 10^5 M_\odot swallow a typical 0.6 M_\odot dwarf before their tidal forces can overwhelm the star's self-gravity. Therefore, this mechanism is characteristic for black holes of moderate masses. The material that remains bound to the black hole settles into an accretion disk and produces an X-ray flare close to the Eddington limit of LEdd1041erg/sMbh/1000ML_{\rm Edd} \simeq 10^{41} {\rm erg/s} M_{\rm bh}/1000 M_\odot$), typically lasting for a few months. The combination of a peculiar thermonuclear supernova together with an X-ray flare thus whistle-blows the existence of such moderate-mass black holes. The next generation of wide field space-based instruments should be able to detect such events.Comment: 8 pages, 2 figures, EuroWD0

    Particle Physics Approach to Dark Matter

    Full text link
    We review the main proposals of particle physics for the composition of the cold dark matter in the universe. Strong axion contribution to cold dark matter is not favored if the Peccei-Quinn field emerges with non-zero value at the end of inflation and the inflationary scale is superheavy since, under these circumstances, it leads to unacceptably large isocurvature perturbations. The lightest neutralino is the most popular candidate constituent of cold dark matter. Its relic abundance in the constrained minimal supersymmetric standard model can be reduced to acceptable values by pole annihilation of neutralinos or neutralino-stau coannihilation. Axinos can also contribute to cold dark matter provided that the reheat temperature is adequately low. Gravitinos can constitute the cold dark matter only in limited regions of the parameter space. We present a supersymmetric grand unified model leading to violation of Yukawa unification and, thus, allowing an acceptable b-quark mass within the constrained minimal supersymmetric standard model with mu>0. The model possesses a wide range of parameters consistent with the data on the cold dark matter abundance as well as other phenomenological constraints. Also, it leads to a new version of shifted hybrid inflation.Comment: 32 pages including 6 figures, uses svmult.cls, some clarifications added, lectures given at the Third Aegean Summer School "The Invisible Universe: Dark Matter and Dark Energy", 26 September-1 October 2005, Karfas, Island of Chios, Greece (to appear in the proceedings

    Recent Advances in Modeling Stellar Interiors

    Full text link
    Advances in stellar interior modeling are being driven by new data from large-scale surveys and high-precision photometric and spectroscopic observations. Here we focus on single stars in normal evolutionary phases; we will not discuss the many advances in modeling star formation, interacting binaries, supernovae, or neutron stars. We review briefly: 1) updates to input physics of stellar models; 2) progress in two and three-dimensional evolution and hydrodynamic models; 3) insights from oscillation data used to infer stellar interior structure and validate model predictions (asteroseismology). We close by highlighting a few outstanding problems, e.g., the driving mechanisms for hybrid gamma Dor/delta Sct star pulsations, the cause of giant eruptions seen in luminous blue variables such as eta Car and P Cyg, and the solar abundance problem.Comment: Proceedings for invited talk at conference High Energy Density Laboratory Astrophysics 2010, Caltech, March 2010, submitted for special issue of Astrophysics and Space Science; 7 pages; 5 figure
    corecore